YEAR 10 Advanced - Quadratic Equation Test

QUESTION 1

Solve for x: (leave any non rational answers in <u>surd</u> form)

(a)
$$6x - x^2 = 0$$

(b)
$$(x-3)^2=16$$

(c)
$$x^3 = 9x$$

(d)
$$3x^2 - 24x = 60$$

(e)
$$5x^2 - 8x + 2 = 0$$

(f)
$$\frac{10}{x} + 1 = x - 2$$

QUESTION 2

Solve the following by using the "completing the square" method.

(a)
$$\dot{x}^2 - 10x = -7$$

(b)
$$2x^2 - 10x + 5 = 0$$

QUESTION 3

7m

(a) A rectangular garden 12m x 7m is surrounded by a path of uniform width. Find the width of the path to the nearest cm(ie 2 d.p.) if the area of the path is 24m².

- (b) A watch making company with manufacturing plants in Australia and Japan can produce 1000 watches per day. If it costs \$45 to produce a watch in Australia and \$30 in Japan, how many watches can be made in each country to have an average cost of \$34.50 per watch?
- (c) The height of a ball above the ground, thrown vertically upwards is given by: $h=30 t 5 t^2$
 - (i) Find the time, t, elapsed before the ball reaches a height of 40 metres
 - (ii) Find how long before the ball falls back to the ground.
 - (iii) Find the maximum height

QUESTION 4

- a) Find the value of k which would give only one solution.
 2kx² + 15x + 20 = 0
- b) Find the values of k for which $x^2 + 6x + k = 0$ has no solutions.
- c) Write down the quadratic equation whose roots are $.\frac{2}{3}, \& -1\frac{3}{4}$ Your answer should be in general form with no fractions

QUESTION 5

- (a) If $a^4 a^2b^2 + ab^2 a^3 = 0$ find the values of a that will satisfy this equation
- (b) By substituting $x^2 + x = v$, find all the solutions to the equation $(x_{\perp}^2 + x)^2 8(x^2 + x) + 12 = 0$

Q2.

(a)
$$\chi^{2}-10\chi+25=-7+25$$

 $(\chi-5)^{2}=18$
 $\chi=5\pm3\sqrt{2}$

(b)
$$2(x^2-5x+25) = -5+25$$

 $2(x-5/2)^2 = 15/2$
 $x-5/2 = \pm \sqrt{15}/4$
 $x = \frac{5}{2} \pm \frac{\sqrt{15}}{2}$

$$\frac{93}{4}$$
 (a) Let width = x

$$A = 12 \times 7 - (7 - 2x)(12 - 2x)$$

$$= 84 - \left[84 - 38x + 4x^{2}\right]$$

$$^{2} x = \frac{19 \pm \sqrt{265}}{4} = 8.82 \text{ m}^{2}$$

(b) Let x = no. made in Aust. 1000-X= No. made in Japan

$$34.5 = 15 \times + 30000$$

== x = 300 (Aust) y = 700 (Japan)

$$0+(a)$$
 One solution $\Rightarrow \Delta = 0$
 $\Delta = 225 - 160k = 0$ when $k = \frac{45}{32}$

(b) No solutions
$$\Rightarrow \Delta < 0$$

 $\Delta = 36 - 4k < 0 \rightarrow k > 9$

(c) roots are
$$\frac{7}{3}$$
 & $-\frac{7}{4}$ then factors are $(x-\frac{7}{3})$ & $(x+\frac{7}{4})$
1e quadratic agua is: $(3x-2)(4x+7)=0$
1e $12x^2+13x-14=0$

$$\frac{05}{(a)} \frac{a^2(a^2-b^2) + a(b^2-a^2)}{(a^2-b^2)(a^2-a)} = 0$$

$$i = (a-b)(a+b)a(a-1) = 0$$

$$i = a = 0 \text{ or } a = 1 \text{ or } -\infty$$

$$a = b \text{ or } a = -b$$

(b)
$$(V-6)(V-2) = 0$$

 $i = V = 2$ or $V = 6$
 $i = x^2 + x = 2$ $x^2 + x = 6$ (
 $(x+2)(x-1) = 0$ $(x+3)(x-2) = 0$
 $-i = x = -2$, 1, -3, or 2.