UNIT 5: The gradient of a straight line

	through the fo		2		f the straight line passi
a	(1, 5) and (2, –7)	b	(-1, -2) and (3, 4)	c	(–2, –3) and (4, –7)
d	(2, 4) and (–1, 3)	e	(5, 4) and (–1, 5)	f	(6, –2) and (8, –3)
g	(–3, 6) and (–5, –1)	h	(8, 10) and (5, 1)	i	(3, 4) and (8, 6)
j	(8, 1) and (4, 5)	k	(-3, 6) and (2, 4)	1	(0, 0) and (6, 9)
Q U	ESTION 2 Show that (1,	-1), (-1, 5) and (3, –7) are collinear.	***************************************	•
Qu	ESTION 3 Which of the f	ollowing	sets of points are collinear?		
Qu a		•	sets of points are collinear? (0, 9), (4, 7), (6, 6)	c	(-2, -3), (0, 1), (-1, -1
		•	· .	c	(-2, -3), (0, 1), (-1, -1

UNIT 6: Using the point gradient formula to find the equation of a line

l	the point	t (3, 4) and has gradient 2.	b	the point (1, 3) and has gradient –1.
	the origin	n and has gradient 2.	_ d	the point (1, 5) and has gradient –2.
	the point	(2, 5) and has gradient 1.	 _ · f	the point (1, 4) and has gradient 4.
	the point	(-2, 7) and has gradient $\frac{1}{2}$.	 h	the point (2, 1) and has gradient $\frac{1}{4}$.
	the point	(3, 6) and has gradient 4.	_ _ j	the point (3, 3) and has gradient 2.
	the point	(–5, 5) and has gradient –2.	- - 1	the point (1, –2) and has gradient 3.
UE	STION 2	Find the equation of a straight gradient of 2.	line that pa	nsses through the point (2, –3) and has a
JE	STION 3	Find the equation of a straight mid-point of the interval joining		s a gradient of 3 and passes through the s (3, 5) and (7, 7).
				· · ·

UNIT 7: Using the two point formula to find the equation of a line

a	(1, 2) and (3		b	line if it passes through the points: (1, 3) and (2, 5)
c C	(–1, 2) and	(-3, -5)	d	(–2, 4) and (3, 4)
e	(0, 0) and (5	5, 8)	f	(2, 2) and (5, 5)
g	(1, 4) and (5	5, 6)	h	(0, -2) and (-1, -6)
i	(3, 4) and (5	, 6)	. j	(7, 2) and (3, 4)
k	(3, 1) and (1	,7)	1	(6, 3) and (4, 2)
Qui	S	Find the equation of the substitution that the poi	nt (0, 3) lies on this	rough the points (1, 5) and (2, 7). Show by s line.
				passes through the points $(0, 0)$ and $(2p, 3p)$
<u> </u>			· · · · · ·	

UNIT 8: Parallel and perpendicular lines

QUEDION I Didic Wilcules the following parts of white pro-	QUESTION 1	State whether the	following pairs	of lines are	parallel or not.
--	------------	-------------------	-----------------	--------------	------------------

a
$$x+3y+9=0$$
 and $x+3y-7=0$

$$b = 2x + y = 6$$
 and $3x - 7y = 9$

c
$$3x-7y+8=0$$
 and $3x-7y=2$

d
$$x+2y=6$$
 and $x+2y-5=0$

e
$$x+y-2=0$$
 and $x+y-7=0$

f
$$y = 4x + 3$$
 and $y = 4x - 5$

$$y = 2x + 1 \text{ and } y = 2x + 8$$

h
$$y = 3x - 1$$
 and $y = -5x + 7$

QUESTION **2** State whether the following pairs of lines are perpendicular or not.

....

a
$$x-3y=7$$
 and $3x-y-2=0$

b
$$5x-3y+7=0$$
 and $3x+5y-6=0$

c
$$2x+7y=8 \text{ and } 3x-4y+7=0$$

d
$$8x - 3y = 2$$
 and $3x + 8y = 9$

e
$$5x-6y=15$$
 and $6x-5y+3=0$

$$f = 2x-3y+7=0 \text{ and } 3x+2y+5=0$$

$$g 2x - 9y = 7 \text{ and } 3x + 6y = 8$$

h
$$x-2y = 6$$
 and $2x + y = 7$

QUESTION **3** State whether the following pairs of lines are parallel, perpendicular or neither.

a
$$x-2y+5=0$$
 and $2x-4y-8=0$

b
$$3x-y-3=0$$
 and $9x-3y+1=0$

c
$$x + 7y = 0$$
 and $2x - 9y = 0$

d
$$x+y-7=0$$
 and $3x-3y+3=0$

e
$$3x-4y+2=0$$
 and $8x+6y-3=0$

$$4x - 8y = 8$$
 and $2x + 9y = 6$

g
$$x+3y-2=0$$
 and $2x+6y-5=0$

h
$$x-5y-2=0$$
 and $10x+2y+3=0$

QUESTION 4 Find the general form of the equation of the straight line passing through:

a the point (2, 5) and parallel to the line 3x - y + 7 = 0.

b the origin and parallel to the line 4x - 5y + 6 = 0.

c the point (-2, 3) and perpendicular to the line 2x + y = 9.

d the point (3, -4) and perpendicular to the line x - y + 5 = 0.

QUESTION **5** Show that the two lines x - 2y + 7 = 0 and 2x + y - 16 = 0 are perpendicular to each othe

UNIT 9: TOPIC TEST

Mark

2

2

2

2

2

2

2

2

2

Coordinate geometry

Instructions for SECTION 1

- You have 15 minutes to answer Section 1
- Each question is worth 2 marks
- Attempt ALL questions
- Calculators are NOT to be used
- Fill in only ONE CIRCLE for each question

1	The	point ((3,	6)	lies	on	the	line:

(A)
$$x + 2y + 12 = 0$$

B
$$x + 2y - 12 = 0$$

$$\bigcirc$$
 2x + y + 12 = 0

(A)
$$\frac{1}{2}$$

$$^{\circ}$$
 $-\frac{1}{2}$

What is the slope of the line PQ? 3

$$\triangle$$
 $\frac{a}{b}$

$$\bigcirc$$
 $-\frac{a}{b}$

Find the length of the interval AB joining the points A(4, 2) and B(10, 10). 4

- (\mathbf{A}) 5
- (\mathbf{B}) 10
- (\mathbb{C}) 6
- (\mathbf{D}) 8

What is the equation of the line parallel to the x-axis passing through P(2, 4)?

$$(A)$$
 $x = 4$

$$\bigcirc$$
 $y = 2$

$$\bigcirc$$
 $x=2$

①
$$y = 4$$

The graph 3x + y = 9 cuts the *x*-axis at the point: 6

What is the equation of the line which passes through the point (-2, 3) and has a 7 gradient of -2?

$$(A) \quad y = 2x - 1$$

(C)
$$y = 2x - 7$$

(D)
$$y = 2x + 7$$

8 Which of the following is a linear equation?

B
$$y = 5 - \frac{7}{x}$$

The mid-point of the interval joining the points (3, 7) and (–5, 3) is: 9

$$(\widehat{\mathbf{A}})$$
 (5, -1)

$$(B)$$
 (-1, 5)

①
$$(-5, -1)$$

What is the gradient of the line represented by the equation 3x - 5y = 5?

$$\textcircled{A} \quad \frac{3}{5}$$

UNIT 9: TOPIC TEST

SECTION:

Coordinate geometry

Instructions for SECTION 2

- You have 20 minutes to answer ALL of Section 2
- Each question is worth 2 marks
- Attempt ALL questions
- · Calculators may be used

	Questions	Answers	Marks
	The interval AB is between the points (–3, 2) and (6, 2) on a number plane. Find:		
1	the mid-point of AB.		2
2	the length of AB.		2
3	the gradient of AB.		2
	The equation of a line is $2x - y - 3 = 0$:		
4	Make y the subject of this equation.		2
5	What is the gradient of this line?		2
6	What is the <i>y</i> -intercept of this line?		2
7	Is this line parallel to the line $y = 2x + 1$?		2
	From the diagram opposite: y A(0, 3)		
8	Find the mid-point of AC.		2
9	What is the length of AC?		2
10	Show that $\triangle ABC$ is isosceles.		2
11	Show that $\triangle ABC$ is a right angled triangle.		2
12	Find the mid-point M of AB.		2
13	Find the gradient of OM.		2
14	Show that the line which passes through the mid-points of AC and AB is parallel to BC.		2
15	Change the equation $y = 3x - 1$ to the general form.		2

Total marks achieved for SECTION 2

30

PAGE 43 1 a $x=3, y=2\frac{1}{2}$ b $x=5, y=1\frac{1}{3}$ c $x=5, y=1\frac{4}{5}$ d x=3, y=4 e x=-2, y=5 f x=-1, y=-5 2 a x=4, y=0 28, y=-18 c x=1, y=3 d $x=1\frac{1}{2}, y=-\frac{1}{2}$

PAGE 44 1 a x = 6, y = 4 b x = 0, y = 3 c x = -4, y = 0 d x = 0, y = 2 e x = 3, y = -1 f x = 1, y = 4 2 a x = 5, y = 2 b x = 3, y = -6, y = -5 d $x = 5, y = 3\frac{2}{3}$

PAGE 45 1 C 2 C 3 C 4 C 5 A 6 C 7 D 8 B 9 D 10 B

PAGE 46 1 x = 6, $y = -\frac{1}{3}$ 2 x = 5, $y = \frac{1}{2}$ 3 $x = 5\frac{1}{3}$, y = 2 4 $x = 1\frac{1}{2}$, y = -1 5 x = 8, y = 1 6 x = 1, y = 4 7 x = 2, y = 4 8 x = 2, y = 4 9 x = 7, $y = -\frac{1}{3}$ 10 x = -19, y = 46 11 x = 3, $y = -\frac{1}{5}$ 12 x = 1, y = 2 13 x = 9, y = 1 14 a = 9, b = -5 15 x = 2, y = 8

PAGE 47 1 a 5 units b 10 units c $2\sqrt{10}$ units d $4\sqrt{5}$ units e 5 units f $2\sqrt{5}$ units 2 a AB = 3 units, BC = 4 units, CA = 5 units Yes rt $\angle d \Delta$ b $AB = 2\sqrt{5}$ units, $BC = \sqrt{53}$ units, $CA = \sqrt{34}$ units; No it is not a rt $\angle d \Delta$ 3 a $\sqrt{41}$ units, 41 b $\left(5 + 6\sqrt{2} + \sqrt{29}\right)$ units

PAGE 48 1 a (0, 6) b (2, 6) c (-2, 1) d (4, 4) e (4, 0) f (0, 4) g (2, -3) h (6, 2) i (3, 7) j (4, 6) k (0, 0) 1 (0, 0) 2 (2, 6), $(4\frac{1}{2}, 2), (\frac{1}{2}, 1)$ 3 a Midpoint of $PR(5, 1\frac{1}{2})$, midpoint of $QR(9, 4\frac{1}{2})$ b 5 units

PAGE 49 1 a 2x+3y-7=0 b x-y+9=0 c 3x-2y-6=0 d 3x-8y-5=0 e 5x-y-8=0 f 2x-y-1=0 g 4x+y-1h 8x-5y-7=0 i 3x-y+4=0 j x-3y+3=0 k x-y+14=0 1 9x-8y+3=0 2 a y=2x+4 b $y=-\frac{2}{5}x+7$ c y=1 d $y=\frac{3}{8}x+\frac{9}{8}$ e y=-3x f y=7x-14 g y=-x+1 h y=3x-8 i y=3x-6 j y=-2x+7 k $y=\frac{8}{7}x-\frac{10}{7}$ 1 y=-3x 3 a b=1 b m=7, b=-3 c m=1, b=5 d m=-2, b=3 e $m=\frac{1}{2}, b=-2$ f $m=\frac{1}{4}, b=-1$ g $m=-\frac{1}{2}, b=-4$ h m=-1, b=0 4 a y=1 b y=7x-2 c y=-x+4 d $y=\frac{1}{2}x+3$ e $y=\frac{-4x}{3}+3$ f y=2x+9

}	y HHH	观
•		- x

X	0 .	1	
у	-1	1	

PAGE 51 1 a -12 b $1\frac{1}{2}$ c $-\frac{2}{3}$ d $\frac{1}{3}$ e $-\frac{1}{6}$ f $-\frac{1}{2}$ g $3\frac{1}{2}$ h 3 i $\frac{2}{5}$ j -1 k $-\frac{2}{5}$ 1 $1\frac{1}{2}$ 2 $\frac{5+1}{-1-1} = \frac{-7-5}{3+1} = \frac{-7+1}{3-1}$

3 b and c 4 m of AB = m of $CD = \frac{-4}{3}$ and m of BC = m of $DA = \frac{3}{4}$

PAGE 52 1 a 2x-y-2=0 b x+y-4=0 c 2x-y=0 d 2x+y-7=0 e x-y+3=0 f 4x-y=0 g x-2y+16=0 h x-4y+2=0 i 4x-y-6=0 j 2x-y-3=0 k 2x+y+5=0 1 3x-y-5=0 2 2x-y-7=0 3 3x-y-4=0

PAGE 53 1 a x-y+1=0 b 2x-y+1=0 c 7x-2y+11=0 d y=4 e 8x-5y=0 f x-y=0 g x-2y+7=0 h 4x-y-1 i x-y+1=0 j x+2y-11=0 k 3x+y-10=0 1 x-2y=0 2 2x-y+3=0; 0-3+3=0 3 3x-2y=0

PAGE 54 1 a yes b no c yes d yes e yes f yes g yes h no 2 a no b yes c no d yes e no f yes g no h yes 3 a per b parallel c neither d perpendicular e perpendicular f neither g parallel h neither 4 a 3x-y-1=0 b 4x-5y=0 c x-2y+d x+y+1=0

EVOCI ECCENTIAL CONTRA VETAD O ADMANDED MATIO DEL GOLON AND ENCANADADA