### LEVEL 1 — COORDINATE GEOMETRY

Only turn back to page number if you have difficulty Page Note: Name the coordinates of 75 Q1. the points: (a) A (f) F (g) G (b) B (c) C (h) H (i) I (d) D (i) J (e) E 76 O2. Find the midpoint of the interval joining: (b) (4, 5) and (2, 1)(a) (2,3) and (6,9)(d) (-5, 2) and (9, -4)(c) (7, -3) and (0, 7)(f) (1, -8) and (-4, -3)(e) (-6, -1) and (5, 3)77 Q3. Find the distance between the points: (b) (6, 1) and (-3, 5)(a) (4, 3) and (2, 9) (d) (2, -3) and (-1, -4)(c) (-1, 4) and (2, -8)(f) (0, -3) and (8, 0)(e) (5, -8) and (-7, 2)Q4. Find the gradient of the line passing through: 78 (b) (5, 1) and (2, 6) (d) (-4, 1) and (-2, -4) (a) (0,0) and (6,3)(c) (-2, 0) and (7, 1)(f) (8, -2) and (-5, 2)(e) (6, -6) and (-1, 3)79,80 Q5. Graph these lines: (b) x = 5 (c) y = x(e) y = 4x - 5 (f) y = -3(a) y = 2x + 1(d) y = 3 - xQ6. Find the gradient and y-intercept of the following lines, then sketch 81,82 each line: (a) y = 5x - 2 (b) y = -2x + 3 (c)  $y = \frac{3}{2}x - 4$  (d)  $y = 1 - \frac{1}{2}x$  (e) y = -x (f)  $y = \frac{1}{2} - x$ (d)  $y = 1 - \frac{1}{2}x$ 

# LEVEL 1 — COORDINATE GEOMETRY CONT.

| Note: Only turn back to page number if you have difficulty                                                                                                                                                         | Page |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Q7. Write the following equations in the form $y = mx + b$ , and hence find the gradient and y-intercept of each one:                                                                                              | 84   |
| (a) $2x - y + 3 = 0$ (b) $4x + 2y - 6 = 0$ (c) $3x - 3y + 2 = 0$ (d) $x + 5y = 0$ (e) $2x - 3y + 1 = 0$ (f) $x - 4y = 4$                                                                                           |      |
| Q8. Find the equation of a straight line with:                                                                                                                                                                     | 85   |
| <ul> <li>(a) a gradient of 3 and passing through the point (4, 3)</li> <li>(b) a gradient of -2 and passing through the point (2, 7)</li> <li>(c) a gradient of 5 and passing through the point (-3, 5)</li> </ul> |      |
| (d) a gradient of $-\frac{1}{2}$ and passing through the point $(5, -2)$                                                                                                                                           |      |
| (e) a gradient of $\frac{2}{3}$ and passing through the point (-4, 3)                                                                                                                                              |      |
| Q9. Find the equation of the straight line which passes through the points:                                                                                                                                        | 86   |
| (a) $(2, 1)$ and $(5, 7)$ (b) $(1, 3)$ and $(4, -3)$ (c) $(4, -8)$ and $(0, 8)$ (d) $(-1, -1)$ and $(1, 5)$ (e) $(-2, 7)$ and $(6, -5)$ (f) $(-3, -4)$ and $(9, 2)$                                                | •    |
| Q10. Which of the following lines are parallel to $y = 2x - 5$ :                                                                                                                                                   | 87   |
| 2x + y - 2 = 0, $2x - 3y + 2 = 0$ , $2x - y + 1 = 0$ , $4x - 2y + 3 = 0$                                                                                                                                           |      |
| Q11. Find the equation of the line which cuts the y-axis at $-3$ and is parallel to $4x - y + 1 = 0$ .                                                                                                             | 87   |
| Q12. Which of the following lines are perpendicular to $y = -3x + 2$ :                                                                                                                                             | 88   |
| 3y-x+3=0, $3x+y-2=0$ , $6y-2x+4=0$ , $3x-3y+3=0$                                                                                                                                                                   |      |
| Q13. Find the equation of the line which is perpendicular to $y = \frac{2}{3}x - 1$                                                                                                                                | 88   |
| and has y-intercept 5.                                                                                                                                                                                             |      |
| Q14. Which of the following points lie on the line $4x - y + 3 = 0$ (3, 15) (-5, -15) (8, 35) (-8, -35) (4, 19)                                                                                                    | 89   |
| Q15. Show that the points $(-4, -5)$ , $(2, -2)$ and $(8, 1)$ are collinear.                                                                                                                                       | 90   |
|                                                                                                                                                                                                                    |      |

#### LEVEL 2 — COORDINATE GEOMETRY

Q1. Find the equation of each line below:



- Q2. Find the equation of the straight line passing through the midpoint of the interval joining (6, 2) and (-2, 4), and the origin.
- Q3. The midpoint of an interval is (2, 4). If the coordinates at the ends of the interval are (m, 5) and (8, n), find m and n.
- Q4. A and B are the points (-3, 4) and (6, -2) respectively. If M is the midpoint of AB, find the distance BM.
- Q5. Find the equation of the line which passes through the point (6, -4) and is parallel to the line 2x 3y + 3 = 0.
- Q6. Find the equation of the line which passes through the points P(0, a) and Q(a, 2a).
- Q7. Find the equation of the line perpendicular to 5x + 2y 1 = 0, and passing through the point (-2, 7).
- Q8. Show that the triangle whose vertices are A(3, 6), B(-2, -4) and C(-5, 2) is a right angled triangle. Find the area of the triangle.
- Q9. Prove that a quadrilateral ABCD with vertices A(-1, 4), B(-3, 3), C(1, 2) and D(3, 3) is a parallelogram.
- Q10. The vertices of a quadrilateral are A(-2, 3), B(5, 4), C(4, -3) and D(-3, -4). Prove that ABCD is a rhombus. Find the area of ABCD.
- Q11. Find the equation of the straight line passing through the point (-2, 1) and through the point of intersection of 4x y 1 = 0 and 2x y + 5 = 0.
- Q12. A, B and C are collinear points and AB = BC. If A is the point (4, 5) and B is the point (1, -1), find the coordinates of C.
- Q13. Find the equation of the line which passes through the point of intersection of 5x 3y + 2 = 0 and x + 3y + 1 = 0, and is parallel to 2x + 3y + 3 = 0.

### Level 1 — Coordinate geometry - ANSWERS

- Q1. A(6,3) B(-3,5) C(-7,0) D(-3,-6) E(2,-2) F(0,0) G(7,-6) H(5,0) I(-5,-2) J(0,-3)

- Q2. (a) (4, 6) (b) (3, 3) (c)  $\left(3\frac{1}{2}, 2\right)$  (d) (2, -1) (e)  $\left(-\frac{1}{2}, 1\right)$  (f)  $\left(-1\frac{1}{2}, -5\frac{1}{2}\right)$
- Q3. (a)  $2\sqrt{10}$  units (b)  $\sqrt{97}$  units (c)  $\sqrt{153}$  units (d)  $\sqrt{10}$  units (e)  $2\sqrt{61}$  units (f)  $\sqrt{73}$  units
- Q4. (a)  $\frac{1}{2}$  (b)  $-1\frac{2}{3}$  (c)  $\frac{1}{9}$  (d)  $-2\frac{1}{2}$  (e)  $-\frac{9}{7}$  (f)  $-\frac{4}{13}$

Q5. (a)



- y = 2x + 1  $-\frac{1}{2} \qquad x$ (b)  $y \qquad x = 5$   $5 \qquad x$





- Q6. (a) m = 5, b = -2 (b) m = -2, b = 3 (c)  $m = \frac{3}{2}$ , b = -4 (d)  $m = -\frac{1}{2}$ , b = 1 (e) m = -1, b = 0 (f) m = -1,  $b = \frac{1}{2}$

- Q7. (a) m = 2, b = 3 (b) m = -2, b = 3 (c) m = -1,  $b = -\frac{2}{3}$  (d)  $m = -\frac{1}{5}$ , b = 0
  - (e)  $m = \frac{2}{3}$ ,  $b = \frac{1}{3}$  (f)  $m = \frac{1}{4}$ , b = -1

- Q8. (a) y = 3x 9 (b) y = -2x + 11 (c) y = 5x + 20 (d)  $y = -\frac{1}{2}x + \frac{1}{2}$

- (e)  $y = \frac{2}{3}x + 5\frac{2}{3}$  (NOTE: Answers may also be written in general form) Q9. (a) y = 2x 3 (b) y = -2x + 5 (c) y = -4x + 8 (d) y = 3x + 2 (e)  $y = -\frac{3}{2}x + 4$  (f)  $y = \frac{1}{2}x 2\frac{1}{2}$  (NOTE: Answers may also be written in general form)
- Q10. 2x-y+1=0 and 4x-2y+3=0
- Q11. y = 4x 3 or 4x y 3 = 0
- Q12. 3y-x+3=0 and 6y-2x+4=0
- Q13.  $y = \frac{3}{2}x + 5$  or 3x + 2y 10 = 0
- Q14. (3, 15), (8, 35) and (4, 19)
- Q15. Points lie on line x-2y-6=0

## Level 2 — Coordinate geometry - ANSWERS

- Q1. (a)  $y = \frac{2}{3}x + 2$
- (b)  $y = -\frac{1}{2}x 1$  (c) y = 4x 2

Q2. 3x - 2y = 0

Q4.  $\frac{\sqrt{117}}{2}$  units

Q5. 2x - 3y - 24 = 0

Q6. x-y+a=0

- Q7. 2x 5y + 39 = 0
- Q8.  $m_{\text{CA}} = \frac{1}{2}$ ,  $m_{\text{CB}} = -2$  : perpendicular. Area = 30 units<sup>2</sup> (NOTE: Can also use Pythagoras' Theorem)
- Q9. AB = CD =  $\sqrt{5}$  units; BC = AD =  $\sqrt{17}$  units;  $m_{AB} = m_{DC} = \frac{1}{2}$  .: AB || DC  $m_{\rm BC} = m_{\rm AD} = -\frac{1}{4}$  : BC || AD
- Q10. All sides are  $5\sqrt{2}$  units;  $m_{AB} = m_{CD} = \frac{1}{7}$  ... AB | | CD;  $m_{\rm BC} = m_{\rm AD} = 7$  : BC || AD.
- Q11. y = 2x + 5
- Q12. (-2, -7)
- Q13. 12x + 18y + 5 = 0