TEST 8

Solving Quadratic Equations by Factorisation

Marks:

/80

Time: 1 hour 30 minutes

Name	•
Name:	Date:

INSTRUCTIONS TO CANDIDATES

Section A (40 marks)

Time: 45 minutes

- 1. Answer all the questions in this section.
- 2. Calculators may not be used in this section.
- 3. All working must be clearly shown. Omission of essential working will result in loss of marks.
- 4. The marks for each question is shown in brackets [] at the end of each question.
- 1 Solve the following quadratic equations.
 - (a) (x+3)(2x-1)=0
 - (b) $(4x-1)^2 = 25$

Answer (a)[2] (b)[3]

Answer (a) [2] (b) [2]

3 Solve the equations

- (a) $12x = 5x^2$,
- **(b)** (2x-3)(x-2) = 21.

4	(a)	Factorise	$8y^{2}$ –	10y -	25.
-	(a)	racionisc	$\circ y -$	TUy →	23

(b) Solve the equation $2x^2 = 162$.

Answer (a)[2]

(b)[2]

5 Solve the equation $(4x - 7)^2 = 5(4x - 7)$.

Answer

[3]

(b)......[2]

Solve the equation (3x + 1)(4x + 3) = 8x + 6.

(a) Factorise $x^2 - 49$.

(b) Hence find the prime factors of 851.

Answer (a)......[1]

Mr Lee is 5 times as old as his son. 3 years ago, the product of their ages was 128. Find their present age.

Answer Mr Lee: years old

Son: years old [4]

10

10 The diagram shows a rectangular mirror measuring 50 cm by 35 cm. It is bordered by a uniform frame of width x cm. If the area of the border is 744 cm², find the value of x.

12

INSTRUCTIONS TO CANDIDATES

Section B (40 marks)

Time: 45 minutes

- Answer all the questions in this section. 1.
- Calculators may be used in this section.
- All working must be clearly shown. Omission of essential working will result in loss of marks. 3.
- The marks for each question is shown in brackets [] at the end of each question.
- 11 (a) (i) Solve the equation $a^2 2a 15 = 0$.
 - (ii) Hence, find all the solutions for the equation $(b-1)^2 2(b-1) 15 = 0$.
 - (b) The sum of the squares of three consecutive positive odd numbers is 286 less than the square of their sum. Find the numbers.

Answer (a)	(i)[2]
	(ii)[2]
(b)	[5]

utes

arks,

ıare

(a) Write down but do not simplify, an expression in terms of x, for the area of the shaded part.

- (b) Form an equation in x and solve it.
- (c) Hence find the area of the quadrilateral ABED.

Answer	(a) cm ²	[2]
	(b):	[4]
٠	(c) cm ²	[1]

- 13 A shopkeeper paid \$1800 for x jackets. He sold all but 5 of the jackets at \$20 more per jacket than he paid.
 - (a) Write down, an expression, in terms of x
 - (i) for the cost of each jacket,
 - (ii) for the selling price of each jacket.

He made a profit of \$200 from the transactions.

(b) Form an equation in x and show that it reduces to $x^2 - 15x - 450 = 0$.

[3]

(c) Solve the equation $x^2 - 15x - 450 = 0$ to find the number of jackets the shopkeeper bought.

Answer (a) (i) \$[1]

(ii) \$[1]

(c)jackets [2]

- (a) Given that px² + 5x 6p 10 = 0, calculate the values of x when p = 3.
 (b) In the diagram, PQRS is a rectangle. The shaded areas are four squares. Given that the perimeter of PQRS is 26 cm and the area of the four squares is 178 cm², find the area of PQRS.

Answer	(a)	***************************************	[3

- A motorist left Town A at 07 30 and travels to Town B. After travelling for 80 km at an average speed of x km/h, he stops to rest for one hour.
 - (a) Write down, an expression in terms of x, for the time in hours, that he took to travel before stopping for a rest.

He then continues the remaining journey of 30 km at an average speed which was 15 km/h slower than the first part of the journey.

- (b) Write down, an expression in terms of x, for the time in hours, that he took to travel for the second part of the journey.
- (c) Given that he reached Town B at 10 30, form an equation in x and show that it reduces to $x^2 70x + 600 = 0$.
- (d) Hence solve the equation $x^2 70x + 600 = 0$ to find the values of x.
- (e) What time will the motorist reach Town B if he had completed the whole journey without stopping at a constant speed of x km/h?

Answer	(a) h	[1]
	(b)h	[1]
	(d)	[2]

IN

Sec

1.

2.

(c)
$$(a + b)^2 = 36$$

 $a^2 + b^2 = 17$ Given
 $(a + b)^2 = a^2 + 2ab + b^2$
 $(a + b)^2 = (a^2 + b^2) + 2ab$ To find the value of ab , use $(a + b)^2$
 $2ab = 36 - 17$ $= 19$
 $4ab = 2 \times 19 = 38$

13. (a)
$$3x(1-2x) + (2x-3)^2$$

= $3x - 6x^2 + 4x^2 - 12x + 9$
= $-2x^2 - 9x + 9$

Teacher's Tip

Expand 3x(1-2x) using a(b+c)=ab+ac. Use $(a-b)^2=a^2-2ab+b^2$ to expand $(2x-3)^2$. Then collect like terms together.

(b) (i)
$$64a^2 - 4d^2e^2$$

= $4(16a^2 - d^2e^2)$
= $4[(4a)^2 - (de)^2]$ Use $a^2 - b^2 = (a+b)(a-b)$.
= $4(4a+de)(4a-de)$

(ii)
$$8px^2 - 3q + 12qx^2 - 2p$$

 $= 8px^2 - 2p + 12qx^2 - 3q$ Regroup first:
 $= 2p(4x^2 - 1) + 3q(4x^2 - 1)$ Factorise by taking
 $= (4x^2 - 1)(2p + 3q)$ out common terms.
 $= (2x + 1)(2x - 1)(2p + 3q)$ Continue to factorise $4x^2 - 1$

$$= (2x)^{2} - 1^{2}$$

$$= (a + b)(a - b).$$
14. (a) (i) $(3x-2)(3x+2)(x-4)$

$$= [(3x)^{2}-2^{2}](x-4)$$
Use $(a + b)(a - b)$

$$= a^{2}-b^{2}$$

$$= (9x^2 - 4)(x - 4)$$
$$= 9x^3 - 36x^2 - 4x + 16$$

(ii)
$$(2x-1)(x^2+3x-1)$$
 Expand term by term
$$= 2x^3 + 6x^2 - 2x - x^2 - 3x + 1$$
 Collect like
$$= 2x^3 + 5x^2 - 5x + 1$$
 Collect like terms together.

(b)
$$8x^3y - 50xy^3$$

 $= 2xy(4x^2 - 25y^2)$
 $= 2xy[(2x)^2 - (5y)^2]$
 $= 2xy(2x + 5y)(2x - 5y)$
Factorise by taking out common terms.

Use $a^3 - b^2 = (a + b)(a - b)$

15. (a) (i)
$$p(q^{2}-r^{2})-qr(q-r)$$

$$= p(q+r)(q-r)-qr(q-r)$$

$$= (q-r)[p(q+r)-qr]$$

$$= (q-r)(pq+pr-qr)$$
Use $a^{2}-b^{2}$

$$= (a+b)(a-b)$$
.
Factorise the expression.
$$(q-r) \text{ is the common factor.}$$

(ii)
$$s(2-s)(1-s) + s^2(s+3)$$

= $s[(2-s)(1-s)]$ Factorise by taking out s , the common factor.
= $s[(2-2s-s+s^2)]$ Simplify the $s(2s^2+3)$ quadratic equation.
= $s(2s^2+2)$ = $2s(s^2+1)$

(b)
$$x + y = 12$$

 $x^2 - y^2 = 36$ Given
 $x^2 - y^2 = (x + y)(x - y)$ Use $a^2 - b^2 = (a + b)(a - b)$.
 $36 = (12)(x - y)$
 $x - y = \frac{36}{12} = 3$
 $7(x - y) = 7 \times 3$
 $7x - 7y = 21$

Test 8: Solving Quadratic Equations by Factorisation

Section A

1. (a)
$$(x+3)(2x-1) = 0$$

 $\therefore x+3 = 0$ or $2x-1 = 0$
 $x = -3$ or $x = \frac{1}{2}$

 $x = 1\frac{1}{2}$ or

(b)
$$(4x-1)^2 = 25$$

 $4x-1 = \pm \sqrt{25}$ Square root both sides.
 $= \pm 5$ Note that there are two possible roots.
 $\therefore 4x-1=5$ or $4x-1=-5$
 $4x=6$ or $4x=-4$

x = -1

2. (a)
$$12x^2 + 17x + 6$$

= $(4x + 3)(3x + 2)$ $4x$
 $3x$
 $+2$
 $+3$
 $+8x$
 $12x^2$

(b)
$$1376 = 12(10)^2 + 17(10) + 6$$
 Rewrite 1376 in the $= [4(10) + 3][3(10) + 2]$ form $12x^2 + 17x + 6$.

.. the two factors of 1376 are 43 and 32.

3. (a)
$$12x = 5x^2$$

 $5x^2 - 12x = 0$
 $x(5x - 12) = 0$
 $\therefore x = 0$ or $5x - 12 = 0$
 $5x = 12$
 $x = 2\frac{2}{5}$

(b)
$$(2x-3)(x-2) = 21$$

$$2x^2 - 4x - 3x + 6 - 21 = 0$$

$$2x^2 - 7x - 15 = 0$$

$$(2x+3)(x-5) = 0$$

$$2x + 3 = 0$$

$$x - 5 = 0$$

$$x = -1\frac{1}{2} \text{ or } x = 5$$

Teacher's Tip

Expand and write in the general form: $ax^2 + bx + c = 0$ before solving the quadratic equation.

(b)
$$2x^2 = 162$$

 $x^2 = \frac{162}{2} = 81$
 $x = \pm \sqrt{81}$ Take square root on both sides;
 $= 9 \text{ or } -9$

5.
$$(4x-7)^2 = 5(4x-7)$$

 $(4x-7)^2 - 5(4x-7) = 0$ Factor out common
 $(4x-7)[(4x-7)-5] = 0$ factor, $(4x-7)$.
 $(4x-7)(4x-12) = 0$
 $\therefore 4x-7 = 0$ or $4x-12 = 0$
 $x = 1\frac{3}{4}$ or $x = 3$

6. (a)
$$12 + 2x - 4x^2$$

= $(4 - 2x)(3 + 2x)$

(b)
$$3x(x + 4) = 0$$

 $\therefore 3x = 0$ or $x + 4 = 0$
 $x = 0$ or $x = -4$

7.
$$(3x+1)(4x+3) = 8x+6$$
 Expand and write in the general form $ax^2 + bx + c$

$$12x^2 + 9x + 4x + 3 = 8x + 6 = 0 \text{ before solving}$$

$$12x^2 + 5x - 3 = 0$$

$$(3x-1)(4x+3) = 0$$

$$3x - 1 = 0 \text{ or } 4x + 3 = 0$$

$$x = \frac{1}{3} \text{ or } x = -\frac{3}{4}$$

8. (a)
$$x^2 - 49 = x^2 - 7^2$$

= $(x + 7)(x - 7)$

(b)
$$851 = 900 - 49$$

 $= 30^2 - 7^2$
 $= (30 + 7)(30 - 7)$
 $= (37)(23)$

: the prime factors of 851 are 23 and 37.

9. Let the son's present age be x years old. Then Mr Lee's present age will be 5x years old. 3 years ago, their ages were (x-3) and (5x-3) respectively.

$$\therefore (x-3)(5x-3) = 128$$

$$5x^2 - 3x - 15x + 9 = 128$$

$$5x^2 - 18x - 119 = 0$$

$$(5x + 17)(x - 7) = 0$$
Given the product of their ages 3 years ago was 128.
$$5x + 17 + 17x - 35x - 7 - 35x - 35x - 119 - 18x$$

$$\therefore 5x + 17 = 0 \qquad \text{or} \quad x - 7 = 0$$

$$x = -3\frac{2}{5} \text{ (rejected)} \quad \text{or} \quad x = 7$$

 \therefore the son is 7 years old while Mr Lee is 35 years old at present.

Check answer: 3 years ago, the son was 4 years old and Mr Lee was 32 years old. $4 \times 32 = 128$

$$(50 + 2x)(35 + 2x) = (50 \times 35) + 744$$

$$1750 + 100x + 70x + 4x^{2} = 1750 + 744$$

$$4x^{2} + 170x - 744 = 0$$

$$2x^{2} + 85x - 372 = 0$$

$$(2x + 93)(x - 4) = 0$$

$$2x$$

$$x$$

$$-4$$

$$-8x$$

$$2x^{2}$$

$$-372$$

$$+85x$$

$$\therefore 2x + 93 = 0 \qquad \text{or} \quad x - 4 = 0$$

$$x = -46 \frac{1}{2} \text{ (rejected) or } \quad x = 4$$

$$\therefore x = 4$$
Reject $x = -46 \frac{1}{2}$ since length cannot be negative.

- 11. (a) (i) $a^2 2a 15 = 0$ (a+3)(a-5) = 0 $\therefore a+3=0$ or a-5=0 a=-3 or a=5
 - (ii) $(b-1)^2 2(b-1) 15 = 0$ Compare to $\therefore a = b-1$ $a^2 - 2a - 15$. b-1 = -3 or b-1 = 5 From part (b) (i) b = -2 or b = 6 a = -3 or 5.
 - (b) Let the first positive odd number be x. Then the next two consecutive positive odd numbers will be (x + 2) and (x + 4) respectively. $[x^2 + (x + 2)^2 + (x + 4)^2] + 286$ $= [x + (x + 2) + (x + 4)]^2$ $x^2 + (x^2 + 4x + 4) + (x^2 + 8x + 16) + 286 = (3x + 6)^2$ $3x^2 + 12x + 306 = 9x^2 + 36x + 36$ $6x^2 + 24x 270 = 0$ Divide both sides by 6. $x^2 + 4x 45 = 0$ (x 5)(x + 9) = 0
 - x 5 = 0 or x + 9 = 0 x = 5 or x = -9 (rejected) When x = 5, x + 2 = 5 + 2 = 7, x + 4 = 5 + 4 = 9.
 - ... the three numbers are 5, 7 and 9. Check answer: $5^2 + 7^2 + 9^2 + 286 = 441$ $(5 + 7 + 9)^2 = 21^2 = 441$

Teacher's Tip

x = -9 is rejected since it is not a positive odd number.

(a) Area of shaded part = $\frac{1}{2} (x + 8)(x) \text{ cm}^2$

Teacher Tip

Area of trapezium

$$=\frac{1}{2}(a+b)h$$

a, b =length of parallel sides b =height

(b)
$$\frac{1}{2}(x+8)(x)$$
 Area of trapezium ABED is 5 times the area of $\triangle BCE$.

$$= 5\left[\frac{1}{2}(x)(x-8)\right]$$
(Given)

$$x(x+8) = 5x(x-8)$$

$$x^2 + 8x = 5x^2 - 40x$$

$$4x^2 - 48x = 0$$

$$4x(x-12) = 0$$

$$4x = 0 \text{ or } x-12 = 0$$

x = 12

(c) x = 12 Reject x = 0. Area of $ABED = \frac{1}{2} (12 + 8)(12)$ $= 120 \text{ cm}^2$

x = 0 or

Check answer: Area of $\triangle BCE = \frac{1}{2} \times 12 \times 4$ = 24 cm² Area of $\triangle BED = 5 \times \text{Area of } \triangle BCE$ = $5 \times 4 = 120 \text{ cm}^2$

- 13. (a) (i) The cost of each jacket $= \$\left(\frac{1800}{x}\right)$
 - (ii) Selling price of each jacket $= \$ \left(\frac{1800}{x} + 20 \right)$
 - (b) $(x-5)\left(\frac{1800}{x} + 20\right) = 1800 + 200$ $(x-5)\left(\frac{1800 + 20x}{x}\right) = 2000$ (x-5)(1800 + 20x) = 2000x Multiply both sides by x. $1800x + 20x^2 - 9000 - 100x = 2000x$ $20x^2 - 300x - 9000 = 0$ Divide both sides by 20. $x^2 - 15x - 450 = 0$ Shown
 - (c) $x^2 15x 450 = 0$ (x - 30)(x + 15) = 0 $\therefore x - 30 = 0$ or x + 15 = 0 x = 30 or x = -15 (rejected) \therefore the shopkeeper bought 30 jackets. Check answer: The shopkeeper bought 30 jackets at \$60 $\left(\frac{$1800}{30} = $60\right)$ each. He sold 25 jackets at \$80 each, thus taking in \$2000. $(80 \times $25)$
- 14. (a) $px^2 + 5x 6p 10 = 0$ When p = 3, $3x^2 + 5x - 6(3) - 10 = 0$ $3x^2 + 5x - 28 = 0$ (3x - 7)(x + 4) = 0 $\therefore 3x - 7 = 0$ or x - 4 = 0 3x = 7 $x = 2\frac{1}{3}$ or x = 4

Let x cm and y cm be the lengths of PQ and QR respectively.

Perimeter of PQRS = 26 cm (Given)

$$2(x + y) = 26$$
 Divide both sides by 2.
 $x + y = 13$

Area of the 4 squares = 178 cm² (Given)

$$x^2 + x^2 + y^2 + y^2 = 178$$

 $2x^2 + 2y^2 = 178$ Divide both
 $x^2 + y^2 = 89$ sides by 2.

$$(x + y)^{2} = x^{2} + 2xy + y^{2} \quad \text{Use } (a + b)^{2} = a^{2} + 2ab + b^{2}.$$

$$(x + y)^{2} = (x^{2} + y^{2}) + 2xy \quad \text{Substitute } x + y = 13.$$

$$(13)^{2} = 89 + 2xy \quad \text{and } x^{2} + y^{2} = 89.$$

$$2xy = 169 - 89 = 80$$

$$xy = \frac{80}{2} = 40$$

Area of
$$PQRS = xy$$

= 40 cm^2

15. (a) Time taken =
$$\frac{80 \text{ km}}{x \text{ km/h}}$$
 Use Total time taken = $\frac{\text{Total distance travelled}}{\text{Ayerage speed}}$

(b) Time taken =
$$\frac{30 \text{ km}}{(x-15) \text{ km/h}}$$
 Average speed is 15 km/h slower.
= $\left(\frac{30}{x-15}\right)$ li average speed = $(x-15)$ km/h

(c) Total time taken = $10\ 30 - 07\ 30 = 3\ h$

Rest
$$\frac{80}{x} + 1 + \frac{30}{x - 15} = 3$$

$$\frac{80}{x} + \frac{30}{x - 15} = 2$$

$$\frac{80(x - 15) + 30x}{x(x - 15)} = 2$$

$$80(x-15) + 30x = 2x(x-15)$$
 Multiply both sides
 $80x - 1200 + 30x = 2x^2 - 30x$ by $x(x-15)$.
 $2x^2 - 140x + 1200 = 0$ Divide both sides by 2.
 $x^2 - 70x + 600 = 0$ Shown

(d)
$$x^2 - 70x + 600 = 0$$

 $(x - 60)(x - 10) = 0$
 $\therefore x - 60 = 0$ or $x - 10 = 0$
 $x = 60$ or $x = 10$

(e)
$$x = 60$$
 Reject $x = 10$.
Time taken $= \frac{80 + 30}{60}$ Total time taken $= \frac{5}{6} h$ Total distance travelled Average speed
$$= 1 \frac{5}{6} h$$

$$= 1 h 50 min$$

$$07 30 + 1 h 50 min = 09 20$$

$$\therefore \text{ the motorist will reach Town } B \text{ at } 09 20.$$

Test 9: Algebraic Manipulation

Section A

1.
$$\frac{x}{a} + \frac{x}{3b} = c$$

$$x\left(\frac{1}{a} + \frac{1}{3b}\right) = c$$
Extract common factor, x.
$$x\left(\frac{3b+a}{3ab}\right) = c$$
The LCM of a and 3b is 3ab:
$$x = \frac{3abc}{3b+a}$$
Cross multiply and express x in terms of the other variables.

2. (a)
$$\frac{3u - 2v}{u - 4v} = \frac{4}{5}$$
 Cross-multiply.
$$5(3u - 2v) = 4(u - 4v)$$
$$15u - 10v = 4u - 16v$$
$$11u = -6v$$
 Divide both sides by 11v.
$$\frac{u}{v} = -\frac{6}{11}$$

(b) (i)
$$20a^2b^3 = 2^2 \times 5 \times a^2 \times b^3$$

 $5a^5b^2 = ... 5 \times a^5 \times b^2$
 $\therefore \text{ HCF} = 5 \times a^2 \times b^2$
 $= 5a^2b^2$

Teacher's Tip

To obtain the Highest Common Factor (HCF), find the largest number of factors which are common to both expressions.

(ii)
$$12pq^2r^3 = 2^2 \times 3 \times p \times q^2 \times r^3$$

 $21p^2qr^4 = 3 \times 7 \times p^2 \times q \times r^4$
 $\therefore LCM = 2^2 \times 3 \times 7 \times p^2 \times q^2 \times r^4$
 $= 84p^2q^2r^4$

Teacher's Tip

To obtain the Least Common Multiple (LCM), find the smallest group of factors which contain all the factors of the two expressions.