PAST EXAMINATION QUESTIONS : BINOMAL THEOLEM

- 1. (i) Write down the expansion by the binomial theorem of $\left(\frac{x}{2} y\right)^5$, and simplify the coefficients.
 - (ii) Find the term independent of x in the expansion of $\left(x^2 \frac{2}{x^2}\right)^4$. (N54/P1A/ii, 54/P1B/2)
- 2. (i) Write down the first four terms of the expansion by the binomial theorem of $\left(2x \frac{1}{2x}\right)^6$ and simplify them as far as possible.
 - (ii) Use the binomial theorem to find the value of (1.05)8 correct to two decimal places. (N58/P1A/2, N58/P1B/2)
- 3. Write down the first five terms of the series formed by expanding $(1-x)^8$ in ascending powers of x. Use your answer to find $(0.99)^8$ correct to five decimal places. (J59/6)
- 4. Write down and simplify the first five terms of the expansion of $\left(1 \frac{x}{2}\right)^{10}$. Use your result to find the value of £1000 (0.95)¹⁰ correct to the nearest pound. (N59/P1A/2, N59/P1B/2)
- 5. Write down the first five terms of the binomial expansion of $(x + y)^8$, simplifying the coefficients. Find the value of $(1.004)^8$ correct to five decimal places. (J60/P2/3)
- 6. (i) Use the binomial theorem to find the value of $(\sqrt{2} + 1)^6 + (\sqrt{2} 1)^6$. (ii) If the coefficients of x^2 and x^3 in the expansion of $(3 + ax)^9$ are the same, find the value of a. (N60/P1A/2, N60/P1B/2)
- 7. Use the binomial theorem to find the value of (0.96) correct to five decimal places. (N60/P2/4i)
- 8. (i) Expand $(2+x)^5 (2-x)^5$ in ascending powers of x and simplify your result. (ii) If the first three terms of the expansion of $(1+\alpha x)^n$ in ascending powers of x are $1+12x+64x^2$, find n and a. (J61/P2/3)
- 9. Write down the first five terms of the series $(1-2x)^{10}$. Use your expansion to find the value, correct to seven decimal place, of $(0.998)^{10}$. (N61/P1/4)
- 10. (i) Expand $(a b)^5$ by the binomial theorem, simplifying the coefficients. By substituting suitable values of a and b, calculate $(9.9)^5$ correct to the nearest whole number. (ii) Find the term independent of x in the expansion of $\left(x + \frac{1}{x}\right)^8$ by the binomial theorem. (J62/P1/3)

- (i) $\frac{x^5}{32} \frac{5x^4y}{16} + \frac{5x^3y^2}{2} \frac{5x^2y^3}{2} + \frac{5xy^4}{2} y^5$
 - (ii) 24
- $2. \quad (i) \quad 64x^6 96x^4 + 60x^2 20$
 - (ii) 1·48
- 3. $1 8x + 28x^2 56x^3 + 70x^4$, 0.92274
- 4. $1-5x+\frac{45x^2}{4}-15x^3+\frac{105x^4}{8}$, £599
- $\mathbf{C}. \quad x^8 + 8x^7y + 28x^6y^2 + 56x^5y^3 + 70x^4y^4,$ 1.03245
- 6, (i) 198
- (ii) $1\frac{2}{7}$
- **J.** 0.78276
- 3. (i) $160x + 80x^3 + 2x^5$
 - (ii) $9, \frac{4}{3}$
- $0. 1 20x + 180x^2 960x^3 + 3360x^4$ 0.9801790
- $10. a^5 5a^4b + 10a^3b^2 10a^2b^3 + 5ab^4 b^5,$
 - (i) 95, 099 (ii) 70