PAST EXAMINATION QUESTIONS: BINOMIAL THEOREM

- Use the binomial theorem to find the exact value of $(\sqrt{3} + 1)^5 (\sqrt{3} 1)^5$. Hence show without using tables or calculators, that the value of $(\sqrt{3} + 1)^5$ lie between 152 and 153. (N62/P1B/2)
- 2. (i) Expand $(1-2x)^4$ and $(1-x)^8$, simplifying the coefficients. For what values of x is the sum of the first four terms of the first expansion equal to the sum of the first three terms of the second? (ii) Use the binomial theorem to express $(16.32)^3$ in the form $a(2^n)$. (N62/P2/1)
- 3. (i) Use the binomial theorem to find the exact value of $(10 \cdot 1)^5$. (ii) Expand $(1 + 2x + 3x^2)^n$ in a series of ascending powers of x up to and including the term in x^2 . (J63/P1/1)
- Use the binomial theorem to find the exact numerical value of $\left(2+\sqrt{5}\right)^5+\left(2-\sqrt{5}\right)^5$. (N63/P2/4ii)
- S. Use the binomial theorem to evaluate $\left(2+\sqrt{2}\right)^4+\left(2-\sqrt{2}\right)^4$. Hence, without using tables, show that $\left(2+\sqrt{2}\right)^4$ lies between 135 and 136. (J64/P1/1)
- 6. Write down the first four terms in the binomial expansion of $(1+2x)^7$, and simplify the coefficients. (N64/P2/4i)
- 7. Use the binomial theorem to find the value of $(1.02)^{10}$ correct to five places of decimals. (J65/P1/1i)
- Using the formula $a\frac{r^n-1}{r-1}$ for the sum of the first *n* terms of a geometrical progression, express in its simplest form the sum of the series $1 + (1+x) + (1+x)^2 + ... + (1+x)^{20}$. Use the binomial theorem to verify that the coefficients of *x*, in the given expression and in your answer, are equal. (N65/P2/6)
- **9.** Without using tables or calculators, evaluate $\left(\sqrt{3}+1\right)^6+\left(\sqrt{3}-1\right)^6$. (J66/P1/1i)
- [O. In the binomial expansion of $(1+x)^n$ the first three terms are 1+3+4+... Calculate the numerical values of n and x, and the value of the fourth term of the expansion. (J66/P2/4ii)
- 11. Write down the coefficients of x^4 and of x^5 in the expansion by the binomial theorem of $(2+x)^7$. Calculate the value of x if the 5th and 6th terms, in the expansion of $(2+x)^7$ in ascending powers of x, are equal. (N66/P2/2)

l· 152

2. (i)
$$1 - 8x + 24x^2 - 32x^3 + 16x^4$$
,
 $1 - 8x + 28x^2 - 56x^3 + 70x^4 - 56x^5 + 28x^6 - 8x^7 + x^8$; 0, $-\frac{1}{8}$

(ii) 0·132651 (2¹⁵)

3. (i) 105, 101·00501

(ii) $1 + 2nx + (2n^2 + n)x^2$

4.1364

S• 136

6. $1 + 14x + 84x^2 + 280x^3$

7.1.21899

 $3 \cdot \frac{1}{x}[(1+x)^{21}-1]$; 210 each

9. 416

 $\{0 \cdot x = \frac{1}{3}, n = 9, \frac{28}{9}\}$

11.280, 84; $3\frac{1}{3}$