PAST EXAMINATION QUESTIONS: BINOMIAL THEOREM

- 1. Find and simplify the coefficient of x^7 in the binomial expansion of $\left(x^2 + \frac{2}{x}\right)^8$. (J67/P2/4i)
- 2. Expand in ascending powers of x, up to and including the term in x^2 , (a) $\left(1+\frac{x}{3}\right)^9$, (b) $(2-x)^6$. Hence find the coefficient of x^2 in the expansion of $\left(1+\frac{x}{3}\right)^9(2-x)^6$.
- 3. Expand $(1+2x)^5$ and $(1-2x)^5$. Use your expansions to calculate the difference between $(1.002)^5$ and $(0.998)^5$ correct to eight places of decimals. (J68/P2/1)
- 4. Write down, in terms of x and n, the term containing x^3 in the expansion of $\left[1-\left(\frac{x}{n}\right)\right]^n$ by the binomial theorem. If this term equals $\frac{7}{8}$ when x=-2, and n is a positive integer, calculate the value of n. (N68/P2/2)
- S. Expand $\left\{1+\left(x+x^2\right)\right\}^{10}$ as a series in ascending powers of x up to and including the term in x^3 . find the value of $(1.0101)^{10}$ correct to three places of decimals. (J69/P1/1)
- 6. Write down and simplify the first four terms in the binomial expansion of $(a+b)^7$. Given that the third and fourth terms are equal, and that a+b=1, calculate the numerical values of a and b. (N69/P2/2)
- \mathbf{A} . Write down and simplify the first 4 terms in the expansion by the binomial theorem of $\left(1-\frac{1}{2}x\right)^{10}$. Find the coefficient of x^2 in the expansion of $(5+4x)\left(1-\frac{1}{2}x\right)^{10}$. (J70/P2/4ii)
- Write down the expansion in ascending powers of x of $(1+2x)^7$, simplifying each term. Use your expansion to calculate the value of 1.02^7 correct to 5 places of decimals. (N70/P2/1)
- Write down the binomial expansions of $(2+x)^5$ and $(2-x)^5$. Use your results to express $(2+x)^5 (2-x)^5$ in powers of x. Calculate the exact value of $(2\cdot1)^5 (1\cdot9)^5$. (N71/P2/3)
- Expand $\left(1+\frac{x}{100}\right)^{10}$ in a series of ascending powers of x up to and including x^4 . A sum of money, £y, increases in such a way that after one year it amounts to £ $y \times \frac{102}{100}$, after two years to £ $y \times \frac{102}{100} \times \frac{102}{100}$, and so on. Use your expansion in order to find, to the nearest pound, the sum obtained at the end of 10 years from an initial sum of £1 000. (J72/P1/2)
- Write down the fourth term in the binomial expansion of the function $\left(px + \frac{q}{x}\right)^n$. (a) If this term is independent of x find the value of n. (b) With this value of n calculate the values of p and q given that the fourth term is equal to 160, both p and q are positive and p q = 1. (N72/P2/3)

2. (a)
$$1 + 3x + 4x^2$$

(b)
$$64 - 192x + 240x^2$$
; -80

3.
$$1+10x+40x^2+80x^3+80x^4+32x^5$$
,
 $1-10x+40x^2-80x^3-80x^4-32x^5$;
 0.02000016

$$\psi$$
. $-\frac{(n-1)(n-2)}{6n^2}x^3$; 8

5.
$$1+10x+55x^2+210x^3$$
; 1·106

6.
$$a^7 + 7a^6b + 21a^5b^2 + 35a^4b^3$$
,

$$a=\frac{5}{8}, b=\frac{3}{8}$$

$$3 \cdot 1 - 5x + \frac{45}{4}x^2 - 15x^3, 36\frac{1}{4}$$

$$\begin{array}{l}
3 \cdot 1 + 14x + 84x^2 + 280x^3 + 560x^4 + 672x^5 + \\
448x^6 + 128x^7, 1.14869
\end{array}$$

$$\begin{array}{c} 6 - 32 + 80x + 80x^2 + 40x^3 + 10x^4 + x^5, \\ 32 - 80x + 80x^2 - 40x^3 + 10x^4 - x^5, \\ 160x + 80x^3 + 2x^5; 16.08002 \end{array}$$

\0.
$$1 + \frac{x}{10} + \frac{45x^2}{10000} + \frac{12x^3}{100000} + \frac{21x^4}{10000000}$$
; £1219

$$0 \cdot \frac{n(n-1)(n-2)p^{n-3}q^3}{6}x^{n-6}$$

(a) 6