PAST EXAMINATION QUESTIONS: BINDMIAL THEOREM

- 1. Find, in ascending powers of x, the first four terms in the expansion of (i) $(1-3x)^5$, (ii) $(1+5x)^7$. Hence find the coefficient of x^2 in the expansion of $(1-3x)^5(1+5x)^7$. (N83/P1/6)
- 2. (a) Find the coefficient of a^3 in the expansion of $(2+3a)^5$.
 - (b) (i) Obtain the expansion of $(1+x)^4 + (1-x)^4$ in ascending powers of x. (ii) Use this expansion to find the arithmetic mean of $(1\cdot1)^4$ and $(0\cdot9)^4$. (J84/P1/6)
- 3. Write down and simplify the expansion $(1-p)^5$. Use this result to find the expansion of $\left(1-x-x^2\right)^5$ in ascending powers of x as far as the term in x^3 . Find the value of x which would enable you to estimate $(0.9899)^5$ from this expansion. (N84/P1/6)
- 4. Expand $\left(2-\frac{x}{2}\right)^5$ by the binomial theorem and reduce the terms to their simplest form. Given that the first three terms in the expansion of $\left(2-\frac{x}{2}\right)^5(1+ax)$ are $32-16x+bx^2$, find the value of a and b. (Sp1/4)
- S. Write down and simplify the expansion of $(2-p)^5$. Use this result to find the expansion of $\left(2-2x+\frac{x^2}{2}\right)^5$ in ascending powers of x as far as the term in x^2 . (J85/P2/6)
- **6.** Find, in ascending powers of x, the first three terms in the expansion of $(1 + ax)^6$. Given that the first two non-zero terms in the expansion of $(1 + bx)(1 + ax)^6$ are 1 and $\frac{-21x^2}{4}$, find the possible values of a and of b. (N85/P2/9)
- Find the first three terms in the expansion, in ascending powers of x, of (i) $(1-3x)^5$, (ii) $(2+x)^4$. Hence find the coefficient of x^2 in the expansion of $(1-3x)^5(2+x)^4$. (J86/P1/7)
- **3.** Obtain and simplify (i) the first four terms on the expansion of $(2+x^2)^6$ in ascending powers of x, (ii) the coefficient of x^4 in the expansion of $(1-x^2)(2+x^2)^6$. (N86/P1/5)
- **9.** Evaluate the coefficient of x^5 and x^4 in the binomial expansion of $\left(\frac{x}{3}-3\right)^7$. Hence evaluate the coefficient of x^5 in the expansion of $\left(\frac{x}{3}-3\right)^7(x+6)$. (J87/P1/6)
- Find the first three terms in the expansion of $(1-2x)^5$ in ascending powers of x, simplifying the coefficients. Given that the first three terms in the expansion of $(a+bx)(1-2x)^5$ are $2+cx+10x^2$, state the value of a and hence find the value of b and of c. (N87/P1/7)
- Find the first three terms of the expansion, in ascending powers of x, of (i) $(1+2x)^6$, (ii) $(1-3x)^6$. Hence obtain the coefficient of x^2 in the expansion of $(1-x-6x^2)^6$.

1. (i)
$$1 - 15x + 90x^2 - 270x^3$$

(ii)
$$1 + 35x + 525x^2 + 4375x^3$$
; 90

3.
$$1-5p+10p^2-10p^3+5p^4-p^5$$
;

$$1 - 5x + 5x^2 + 10x^3$$
; 0.01 or -1.01

4.
$$32-40x+20x^2-5x^3+\frac{5}{8}x^4-\frac{x^5}{32}$$
;

5.
$$32 - 80p + 80p^2 - 40p^3 + 10p^4 - p^5$$
; $32 - 160x + 360x^2$

$$3 \cdot (i) \quad 1 - 15x + 90x^2$$

(ii)
$$16 + 32x + 24x^2$$
; 984

3. (i)
$$64 + 192x^2 + 240x^4 + 160x^6$$

$$Q, \frac{7}{9}, -\frac{35}{3}; -7$$

$$(0.1-10x+40x^2; 2, 7, -13)$$

11. (i)
$$1 + 12x + 60x^2$$

(ii)
$$1 - 18x + 135x^2$$
; -21