PAST EXAMINATION QUESTIONS: BINDMAL THEOREM - 1. In the expansion of $(k+x)^8$, where k is a positive constant, the coefficients of x^2 and x^3 are equal. Find the value of k. (N93/P1/4) - 2. The expansion of $(2 + 3x)(1 \frac{x}{2})^n$, in ascending powers of x as far as the term in x^2 , is $2 5x + ax^2$. Find the value of n and of a. (J94/P1/5) - 3. Find the coefficient of x^3 in the expansion of $(2+3x)\left(1-\frac{x}{2}\right)^8$. (N94/P1/5) - 4. Given that the coefficients of x^2 and x^3 in the expansion of $(3+x)^{20}$ are a and b respectively evaluate $\frac{a}{b}$. (J95/P1/6) - Given that the coefficient of x^2 in the expansion of $(4 + kx)(2 x)^6$ is zero, find the value of k. (N95/P1/3) - 6. (a) In the expansion of $(1-2x)^{11}$ the coefficient of x^3 is k times the coefficient of x^2 . Evaluate k. - (b) Find the coefficient of a^4b^4 in the expansion of $\left(a + \frac{b}{2}\right)^8$. (J96/P1/5) - 7. (a) Evaluate the coefficient of x^9 in the expansion of $(1+2x)(3+x)^{11}$. - (b) Evaluate the coefficient of x^5 in the expansion of $(x^2 \frac{2}{x})^7$. - (c) The first three terms in the binomial expansion of $(a b)^n$, in ascending powers of b, are denoted by p, q and r respectively. Show that $\frac{q^2}{pr} = \frac{2n}{n-1}$. Given that p = 4, q = 32 and r = 96, evaluate n. (N96/P1/11) - 7. The coefficient of x^3 in the expansion of $(2+ax)(1-3x)^6$ is 405. Find the value of a. - 9. Find the coefficient of x^3 in the expansion of $(9+8x)(1-\frac{x}{3})^3$ - 10. Find (i) the coefficient of x in the expansion of $(x-\frac{2}{x})^{\frac{1}{2}}$, - (ii) the coefficient of x^3 in the expansion of $(2+5x)(1-\frac{x}{2})^8$. f. 2 2. n = 8, a = 2 **3.** 7 $\frac{1}{4} \cdot \frac{1}{2}$ S·5 **6**⋅(a) −6 7 (a) 9405 (b) -280(c) n = 43. a = 11 (b) 21