PAST EXAMINATION QUESTIONS: BINDMIAL THEOREM

- 1. (a) Find the coefficient of x in the expansion of $(x^2 \frac{3}{x})^5$.
 - (b) Obtain the first 4 terms in the expansion of $(1 + p)^7$ in ascending powers of p. Hence find the coefficient of x^3 in the expansion of $(1 + x + 2x^2)^7$. (N98/P1/5)
- 2. Find, in terms of a, the coefficient of x^2 in the expansion of $(1-3x)(1+ax)^6$. Given that the coefficient of x^2 is 24 and that a is positive, evaluate (i) a, (ii) the coefficient of x in the expansion. (J99/P1/4)
- 3. Find the term independent of x in the expansion of $(2x \frac{1}{2x^2})^9$. (N99/P1/4)
- 4. (a) In the expansion of $(1 ax)^{13}$, where a is a positive constant, the coefficient of x^2 is 702.
 - (i) Find the value of a.
 - (ii) Evaluate the coefficient of x^3 .
 - (b) Find the term independent of x in the expansion of $\left(x + \frac{1}{2x}\right)^8$. (J2000/P1/4)
- S. Find the coefficient of x^3 in the expansion of $(10-7x)(1+\frac{x}{5})^8$. (N2000/P1/4)
- 6. Find the coefficient of x^3 in the expansion of (i) $(2-3x)^6$, (ii) $(1+2x)(2-3x)^6$. (sp1/3)
- 7. The coefficient of x^2 in the expansion of $(2+x)(1-ax)^5$ is zero. Find the positive value of a. (J01/P1/8)
- 3. In the expansion of $(1-2x)^n$ the sum of the coefficients of x and x^2 is 16. Given that n is positive, find the value of (i) n, (ii) the coefficient of x^3 . (N01/P1/5)
- 9. Obtain
 - (i) the expansion, in ascending powers of x, of $(2-x^2)^5$,
 - (ii) the coefficient of x^6 in the expansion of $(1+x^2)^2(2-x^2)^5$. (J2002/P1/7)
- 10. Find the first three terms in the expansion, in ascending powers of x, of $(2 + x)^6$ and hence obtain the coefficient of x^2 in the expansion of $(2 + x x^2)^6$. (N2002/P2/2)

- - (b) First 4 terms = $1 + 7p + 21p^2 + 35p^3$ Coefficient of $x^3 = 119$
- $(1-3x)(1+6ax+15a^2x^2+...)$
 - (i) a = 2
 - (ii) coefficient of x = 9
- **3** -672
- 4. (a) (i) a=3
- (ii) -7722
- (b) $4\frac{3}{8}$
- $5. -3\frac{9}{25}$
- **6**. (i) -4320
- (ii) 0
- **4**. $a = \frac{1}{4}$
- **3.** (i) n = 4
- (ii) -32
- **q.** (i) $32 80x^2 + 80x^4 40x^6 + 10x^8 x^{10}$
 - (ii) 40
- $(0.64 + 192x + 240x^2 + ...; 48$