PAST EXAMINATION QUESTIONS: BINDMIAL THEOREM

- Write down the first three terms in the binomial expansion of $\left(2 \frac{1}{2x^2}\right)^{10}$ in ascending powers of $\frac{1}{x^2}$. Hence find the value of $(1.995)^{10}$ correct to three significant figures. (J78/P2/5)
- 2. Evaluate the term which is independent of x in the expansion of $\left(x^2 \frac{1}{2x^6}\right)^{16}$. (N78/P1/5)
- 3. Find the coefficient of x^{-12} in the expansion of $\left(x^3 \frac{1}{x}\right)^{24}$. (J79/P1/7)
- 4. In the binomial expansion of $\left(1 \frac{1}{10}\right)^n$ the sum of the second and third terms is zero. Calculate the value of n and hence evaluate the fourth term. (N79/P2/1)
- 5. Find, in ascending powers of x, the first three terms in the expansions of (i) $(2-x)^6$, (ii) $(2+x)(2-x)^6$. (J80/P1/6)
- Obtain the first 4 terms of the expansion of $(1+p)^6$ in ascending powers of p. By writing $p=x+x^2$, obtain the expansion of $(1+x+x^2)^6$ as far as the term in x^2 . Hence find the value of $(1.0101)^6$ to three decimal places. (N80/P2/7)
- \rightarrow Find, in ascending powers of x, the first three terms in the expansion of $(2-3x)^8$. Use the expansion to find the value of $(1.997)^8$ correct to the nearest whole number. (J81/P1/7)
- 3. Find, in ascending powers of t, the first three terms in the expansions of (i) $(1 + \alpha t)^5$, (ii) $(1 \beta t)^8$. Hence find, in terms of α and β , the coefficient of t^2 in the expansion of $(1 + \alpha t)^5(1 \beta t)^8$. (N81/P1/5)
- Q. Expand $\left(2 \frac{x}{2}\right)^5$ in ascending powers of x. Use the first four terms of the expansion to find an approximate value of $(1.99)^5$. (J82/P2/6)
- Obtain the first four terms on the expansion $\left(2 + \frac{x}{4}\right)^8$ in ascending powers of x. By substituting an appropriate value of x into this expansion, find the value of $(2.0025)^8$ correct to three decimal places. (N82/P1/6)

- 1. $1024 2560 \frac{1}{x^2} + 2880 (\frac{1}{x^2})^2$, 999
- 2. $113\frac{3}{4}$
- **3**. −2024
- μ . n = 21, -1.33
- 5. (i) $64-192x+240x^2$ (ii) $128-320x+288x^2$
- $6. 1 + 6p + 15p^2 + 20p^3;$ $1 + 6x + 21x^2$, 1.062
- $7. 256 3072x + 16128x^2; 253$
- $\mathbf{\mathcal{G}} \cdot (\mathbf{i}) \quad 1 + 5\alpha t + 10\alpha^2 t^2$
 - (ii) $1 8\beta t + 28\beta^2 t^2$; $10\alpha^2 - 40\alpha\beta + 28\beta^2$
- $9. \quad 32 40x + 20x^2 5x^3 + \frac{5}{8}x^4 \frac{x^5}{32};$ 31.20796
- $10.256 + 256x + 112x^2 + 28^3$; 258.571