PAST EXAMINATION QUESTIONS: PARAMETER + CARTESIAN EQUIS.

- An operation maps P(x, y) onto P'(x + y, 2y x). Find the equation of the locus of P' as P' moves along (i) the x-axis, (ii) the line y = x, (iii) the line y = -x, (N80/P1/10)
- 2. Find the equation of the straight line having a gradient of $-\frac{1}{t}$ and passing through the point $\left(t^2, 2t\right)$. This line meets the line $2y + x = 4 + 2t^2$ in the point P. Show that the y-coordinate of P is t + 2. Find the x-coordinate of P and determine the equation of the locus of P as t varies. (N80/P2/15)
- 3. (a) A, B and P are the points (3, 2), (6, 4) and (x, y) respectively. Given that the $\angle APB$ is a right angle find the equation of the locus of P.
 - (b) Find the cartesian equation of the curve which are defined parametrically by x = t(t-1), y = 1 + t. (N81/P1/16)
- 4. An operation maps P(x, y) onto P'(x y, 2y). Find the equation of the locus of P' as P moves on the line y = 2x. (N83/P2/10b)
- 5. (a) Find the cartesian equation of the curve which is defined parametrically by x = t 3, $y = t^2 5t$.
 - (b) Find the equation of the line of gradient m that passes through the point (m, m). Given that this line crosses the x-axis at A and the y-axis at B, find the equation of the locus of M, the midpoint of AB, as m varies. (J84/P2/16)
- 6. The line y = px meets the line y = x + p at Q. Find the equation of the locus of Q as p varies. (N84/P2/16a)
- Find the cartesian equation of the curve which is defined parametrically by x = t(t 1), y = 1 + t. (Sp2/6bi)
- 7. (a) The line py = x + p meets the line y = px at Q. Find (i) the equation of the locus of Q as p varies, (ii) the co-ordinates of the points where this locus meets the y-axis.
 - (b) Given that A is the point (0, 3) and B is the point (0, -3), a point P(x, y) moves so that PA = 2 PB. Show that the equation of the locus of P is $x^2 + y^2 + 10y + 9 = 0$. (J85/P1/16)
- Q. A line through the point (1, 0) meets the variable line y = tx at right angles at the point P. Find, in terms of t, the co-ordinates of P. Show that the equation of the locus of P as t varies is $x^2 + y^2 = x$. (N85/P1/16a)
- (O. (a) The cartesian equation of a curve is y(y-2) = x. Given that x is defined parametrically by $x = t^2 1$ and that y = 4 when t = 3, express y in terms of t.
 - (b) The parametric equations of a curve are $x = t^3 t$, $y = t^2 + t$. Express $\frac{x}{y}$ in terms of t in the simplest possible form. Hence, or otherwise, find the Cartesian equation of the curve. (J86/P2/8b)

$$\mathbf{1} \cdot (\mathbf{i}) \quad x + y = 0$$

(ii)
$$2y = x$$

(iii)
$$x = 0$$

2.
$$ty + x = 3t^2$$
, $2t^2 - 2t$, $x = 2y^2 - 10y + 12$

3. (a)
$$x^2 + y^2 - 9x - 6y + 26 = 0$$

(b)
$$y^2 = x + 3y - 2$$

$$4. y = -4x$$

$$(a) \quad y = (x+3)(x-2)$$

(b)
$$y - mx = m - m^2$$
, $y = -x(2x + 1)$

$$b \cdot y = x(y-x)$$

$$3 \cdot x = y^2 - 3y + 2$$

3. (a) (i)
$$x^2 = y^2 - y$$
 (ii) (0, 0), (0, 1)

$$q. \left(\frac{1}{1+t^2}, \frac{t}{1+t^2}\right)$$

10. (a)
$$y = t + 1$$

(a)
$$y = t + 1$$

(b) $\frac{x}{y} = t - 1$; $y^3 = x^2 + 3xy + 2y^2$