PAST EXAMINATION QUESTIONS: QUADRATIC INEQUALITIES

1. A farmer has 600 m of fencing and wishes to make an enclosure consisting of three equal rectangles, as in the figure.

νm			
	x m	x m	хm

Express y, and the total area A m², in terms of x, and find the value of x for which A is a maximum. (J74/P2/3)

- 2. Given that $x^2 3x + 5 = (x p)^2 + q$ for all values of x, calculate the numerical values of p and q. Hence state (i) the minimum value of $x^2 3x + 5$, (ii) the value of x at which the minimum value occurs. Sketch the curve $y = x^2 3x + 5$. (J74/P2/14)
- 3. Determine in each of the following cases the range(s) of values of x for which (i) (x-3)(x+5) < 0, (ii) $6+x < 2x^2$. Illustrate your answers by sketching graphs of the curves y = (x-3)(x+5) and $y = 6+x-2x^2$. (N74/P2/14)
- 4. The figure shows the curve y = x(4 x) and the line $y = \frac{1}{2}x$. P is the point (t, 0), where $0 < t < 3\frac{1}{2}$, and PAB is parallel to the y-axis. Express the length of AB in terms of t and find the value of t for which this length is a maximum. (J76/P1/6)

- 5. Find the values of x for which $3x + 4 < x^2$. (J76/P2/12b)
- 6. Given that $y = 7 px x^2 = 16 (q+x)^2$, for all values of x, where p and q are both positive, (i) calculate the values of p and q, (ii) state the maximum value of y, and the value of x at which it occurs (iii) find the range of values of x for which y is positive. (J80/P1/13)
- **4.** Write $x^2 + 6kx + 144$ in the form $(x+p)^2 + q$ and thus obtain expressions for p and q in terms of k. Hence find the range of values of k^2 such that $x^2 + 6kx + 144$ is positive for all values of x, and deduce the corresponding range of values of k. (J81/P1/12b)
- 7. The curve $y = \alpha x^2 + bx + c$ has a maximum point at (2, 18) and passes through the point (0, 10). Evaluate a, b and c. (N81/P2/1)
- 9. Given that the curve whose equation is $y = p (x q)^2$ crosses the x-axis at the points (1, 0) and (3, 0), find (i) the value of p and of q, (ii) the maximum value of y. (N82/P2/13a)
- 10. Express $y = \frac{1}{2} \{ (x+5)^2 + (x-7)^2 \}$ in the form $y = (x+q)^2 + r$. Hence find the least value of y and the corresponding value of x. (J83/P2/13b)
- N. A rectangular sheep pen has one fixed sided which is part of a long straight stone wall. The remainder is to be made by using 80 m of fencing. Find the dimensions of the rectangle with the greatest possible area. (N83/P1/3)
- 12. Find the range of values of k for which $8-3x-x^2 \le k$ for all real values of x. (J84/P1/13a)

- 1. $150 \frac{3}{2}x$, $450 \frac{9}{2}x^2$; 50
- $2. 1\frac{1}{2}, 2\frac{3}{4}$
 - (i) $2\frac{3}{4}$
 - (ii) $1\frac{1}{2}$
- 3. (i) -5 < x < 3
 - (ii) $x > 2 \text{ or } x < -1\frac{1}{2}$
- 4. $\frac{1}{2}(7t-2t^2)$; 1.75
- 5. x > 4 or x < -1
- **6.** (i) 6, 3
 - (ii) 16, -3
 - (iii) -7 < x < 1
- 3k, $144 9k^2$; $k^2 < 16$; -4 < k < 4
- 8. a = -2, b = 8, c = 10
- **9.** (i) p=1, q=2
 - (ii) 1
- 10. $(x-1)^2 + 36$, y = 36 where x = 1
- 11. $20 \text{ m} \times 40 \text{ m}$
- 12. $k \ge 10\frac{1}{4}$