PAST EXAMINATION QUESTIONS: QUADRATIC INEQUALITIES

- 1. Find the range of values of x for which $2(x^2 2) > 7x$. (J99/P1/3)
- **2.** Find the range of values of k for which the graph of $y = x^2 + (k-4)x + 1$ lies entirely above the x-axis. (J99/P1/9)
- 3. Find the range of values of x for which $3(x + 1)^2 < 16x$. (N99/P1/2)
- 4. (a) Find the range of values of x for which $x^2 + 3x 4 > 5x 1$.
 - (b) Find the range of values of c, given that, for all values of x, $x^2 5x + c > 2$. (J2000/P1/3)
- ς . Find the range of values of x for which (2x + 1)(4 x) > 4. (N2000/P1/3b)
- 6. Given that $f(x) = 2x^2 5x 7$,
 - (i) find the value of a, of b and of c for which $f(x) \equiv a(x-b)^2 c$,
 - (ii) state the minimum value of f(x),
 - (iii) sketch the graph of y = |f(x)| for $-2 \le x \le 4.5$, indicating on your graph the coordinates of the stationary point and of the points where the graph meets the coordinate axes,
 - (iv) calculate the values of x for which |f(x)| = 7, giving your answers to 2 decimal places where appropriate. (N2000/P1/17)
- 7. The function f is defined for the domain $-3 \le x \le 3$ by $f(x) = 4x^2 + 4x 15$.
 - (a) Express f(x) in the form $a(x+b)^2 + c$, where a, b and c are constants.
 - (b) Find the range of f corresponding to the given domain.
 - (c) Find the solution set of x for which f(x) > 0.
 - (d) State the coordinates of the turning point of the curve y = |f(x)|. (sp1/12 EITHER)
- **3.** (i) Find the range of values of x for which $x^2 + 7x 9 < 8x 3$.
 - (ii) Find the range of values of c for which $x^2 + 7x 9 > 8x + c$, for all values of x. (J01/P1/9)
- **9.** Find the range of values of x for which x(2x + 5) > 12. (N01/P1/7a)
- 10. Find the x-coordinate of the point on the line y = 5 2x where xy is a maximum. (N01/P1/15a)
- 11. Find the value of a and b for which the solution set of the quadratic inequality $x^2 + ax > b$ is $\{x : x > 2\} \cup \{x : x < -4\}$. (J2002/P2/9b)

$$1. \quad x < -\frac{1}{2} \text{ or } 4 < x$$

2.
$$2 < k < 6$$

3.
$$\frac{1}{3} < x < 3$$

4. (a)
$$x < -1 \text{ or } x > 3$$

(b)
$$c > 8$$

$$\varsigma$$
. $0 < x < 3\frac{1}{2}$

6. (i)
$$a=2, b=1\frac{1}{4}, c=10\frac{1}{8}$$

(ii)
$$-10\frac{1}{8}$$

(iii)
$$y = 2(x - 1\frac{1}{4})^2 - 10\frac{1}{8}$$

= $2x^2 - 5x - 7$

(iv)
$$x = -1.68, 0, 2.5, 4.18$$

$$\exists$$
 (i) $f(x) = 4(x + \frac{1}{2})^2 - 16$

(ii)
$$-16 \le f(x) \le 33$$

(iii) If
$$f(x) > 0$$
 then $x < -2\frac{1}{2}$ or $1\frac{1}{2} < x$

(iv) The turning point of
$$|f(x)|$$
 is $(-\frac{1}{2}, 16)$

3. (i)
$$-2 < x < 3$$

(ii)
$$c < -9\frac{1}{4}$$

q.
$$x < -4$$
 or $1\frac{1}{2} < x$

$$10.$$
 $x = 1\frac{1}{4}$

$$a = 2, b = 8$$