PAST EXAMINATION QUESTIONS : TRIG IDENTITIES + EQNS

- 1. Prove the identity $\frac{(\sin x + \cos x)^2}{\sin x \cos x} \equiv 2 + \sec x \csc x$. (N88/P1/3)
- 2. Two acute angles, α and β , are such that $\tan \alpha = \frac{4}{3}$ and $\tan (\alpha + \beta) = -1$. Without evaluating α or β , (i) show that $\tan \beta = 7$, (ii) evaluate $\sin \alpha$ and $\sin \beta$, (iii) evaluate $\sin^2 2\alpha + \sin^2 2\beta$. (N88/P2/3b)
- 3. The cartesian equation of a certain curve can be written in the form $(x-1)^2 + (y-3)^2 = 1$. Given that x is defined parametrically by $x = 1 + \cos \theta$, and that y = 2 when $\theta = \frac{\pi}{2}$, express y in terms of θ . (N88/P2/8b)
- 4. Prove the identity $\cos x \csc x + \sin x \sec x = \csc x \sec x$. (J89/P1/6)
- 5. Find the cartesian equation of the curve which is defined parametrically by $x = 3 \sin^2 t$, $y = \cos t$. (J89/P2/8bii)
- 6. Prove the identity $(\sin x + \cos x) (1 \sin x \cos x) \equiv \sin^3 x + \cos^3 x$. (N88/P1/6)
- \Rightarrow Given that $\sin A = \frac{1}{3}$, find, without using tables or a calculator, the values of (i) $\cos 2A$, (ii) $\cos 4A$. (N88/P2/6a)
- **3** Prove the identity (sec $x \tan x$) (cosec x + 1) $\equiv \cot x$. (J90/P1/4)
- **9.** The Cartesian equation of a curve can be written in the form $(y-1)^2 (x+2)^2 = 1$. Given that x is defined parametrically by $x = \tan \theta 2$, and that y = 0 when $\theta = 0$, express y in terms of θ . (J90/P2/8b)
- (i) cosec A. (N90/P1/2)
- (N90/P2/4a) Given that $\frac{\sin(A-B)}{\sin(A+B)} = \frac{5}{7}$, show that $\tan A = k \tan B$ and state the value of k. (N90/P2/4a)
- 12. The parametric equations of a curve are $x = \csc \theta \cot \theta$, $y = \csc \theta 2 \cot \theta$. Express cosec θ and $\cot \theta$ in terms of x and y. Hence obtain the cartesian equation of the curve. (N90/P2/8c)
- Prove the identity $\cot^2 \theta \cos^2 \theta = \cot^2 \theta \cos^2 \theta$. (J91/P1/3)
- 14. Given that $p = \cos A + \sin A$ and $q = \cos A \sin A$, (i) show that $p^2 q^2 = 2 \sin 2A$, (ii) find the numerical value of $p^2 + q^2$, (iii) express $\frac{p}{q}$ in terms of $\tan A$. (J91/P2/3a)

2. (ii) $\sin \alpha = \frac{4}{5}$, $\sin \beta = \frac{7}{\sqrt{50}}$

(iii) 1

3. $y = 3 - \sin \theta$ 5. $x = 3(1 - y^2)$

7· (i) 7/9

(ii) $\frac{17}{81}$

 $9. \ y = 1 - \sec \theta$

(i) $\sqrt{1+p^2}$

11. 6

12. 2x - y, x - y, $3x^2 - 2xy = 1$

14. (ii) 2

(iii) $\frac{1+\tan A}{1-\tan A}$