

SYDNEY GRAMMAR SCHOOL

2017 Assessment Examination

FORM VI

MATHEMATICS EXTENSION 1

Monday 22nd May 2017

General Instructions

- Writing time 2 hours
- · Write using black pen.
- Board-approved calculators and templates may be used.

Total — 70 Marks

• All questions may be attempted.

Section I - 10 Marks

- Questions 1-10 are of equal value.
- Record your answers to the multiple choice on the sheet provided.

Section II - 60 Marks

- Questions 11-14 are of equal value.
- All necessary working should be shown.
- · Start each question in a new booklet.

Collection

- Write your candidate number on each answer booklet and on your multiple choice answer sheet.
- · Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- · Write your candidate number on this question paper and hand it in with your answers.
- Place everything inside the answer booklet for Question Eleven.

Checklist

- SGS booklets 4 per boy
- Multiple choice answer sheet
- · Reference sheet
- Candidature 125 boys

Examiner

REI

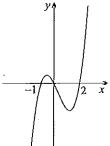
SGS Assessment 2017 Form VI Mathematics Extension 1 Page 2

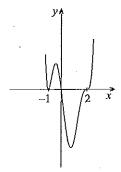
SECTION I - Multiple Choice

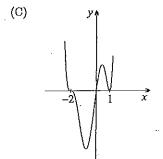
Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

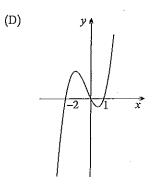
QUESTION ONE

Which diagram best represents the graph of $y = x(x-2)^3(x+1)^2$?









Examination continues next page ...

SGS Assessment 2017 Form VI Mathematics Extension 1 Page 3

QUESTION TWO

A particle is moving in simple harmonic motion. The displacement function is given by $x = 2\sin 3t$. What is the amplitude A and the period of motion T?

- (A) A=2 and $T=rac{2\pi}{3}$
- (B) A=2 and $T=\frac{\pi}{3}$
- (C) A=3 and $T=\pi$
- (D) A=3 and $T=\frac{\pi}{2}$

QUESTION THREE

Three stones are projected simultaneously off the edge of a tall vertical cliff. Stone A is projected horizontally at $10 \,\mathrm{ms^{-1}}$; stone B is projected horizontally at $20 \,\mathrm{ms^{-1}}$; and stone C is dropped from rest. The only force acting on the stones is acceleration due to gravity.

Which statement is correct?

- (A) Stone A reaches the ground first.
- (B) Stone B reaches the ground first.
- (C) Stone C reaches the ground first.
- (D) All three stones reach the ground at the same time.

QUESTION FOUR

A polynomial equation has roots α , β and γ where

$$\alpha + \beta + \gamma = 2$$
, $\alpha\beta + \alpha\gamma + \beta\gamma = 5$ and $\alpha\beta\gamma = -2$.

Which of the following polynomial equations could it be?

(A)
$$x^3 + 2x^2 + 5x - 2 = 0$$

(B)
$$x^3 - 2x^2 + 5x + 2 = 0$$

(C)
$$x^3 - 2x^2 - 5x + 2 = 0$$

(D)
$$x^3 - 2x^2 + 5x - 2 = 0$$

SGS Assessment 2017 Form VI Mathematics Extension 1 Page 4

QUESTION FIVE

Suppose $\tan 2\theta = 1$, where $0 \le \theta \le 2\pi$. In which quadrant(s) could θ lie?

- (A) the first quadrant
- (B) the first or second quadrant
- (C) the first or third quadrant
- (D) the first, second, third or fourth quadrant

QUESTION SIX

Which of the following is the derivative of $\tan^{-1} 3x$?

(A)
$$\frac{3}{1-9x^2}$$

(B)
$$\frac{3}{\sqrt{1-9x^2}}$$

(C)
$$\frac{3}{1+9x^2}$$

(D)
$$\frac{3}{9+x^2}$$

QUESTION SEVEN

Consider the function $f(x) = \frac{2x}{x+1}$ and its inverse function $f^{-1}(x)$.

What is the value of $f^{-1}(4)$?

- (A) 2
- (B) $\frac{8}{5}$
- (C) $\frac{5}{8}$
- (D) -2

QUESTION EIGHT

When the polynomial P(x) is divided by $x^2 - 4$, the remainder is 2x - 1. What is the remainder when P(x) is divided by x - 2?

- (A) -5
- (B) -1
- (C) 3
- (D) 5

SGS Assessment 2017 Form VI Mathematics Extension 1 Page 5

QUESTION NINE

What is the value of k such that $\int_0^k \frac{1}{\sqrt{4-x^2}} dx = \frac{\pi}{3}$?

- (A) $\sqrt{2}$
- (B) 1
- (C) √3
- (D) $\frac{\sqrt{3}}{2}$

QUESTION TEN

Suppose

$$P(x) = x^4 + 5x^3 + 3x^2 - 6x - 10, Q(x) = x^3 + 6x^2 + 8x - 2$$

and

$$P(x) - Q(x) = (x+4)(x-2)(x+1)^{2}$$
.

What are the geometric implications of this?

- (A) P(x) and Q(x) are tangent at x = -4, x = 2 and x = -1.
- (B) P(x) and Q(x) cross at x = -4, x = 2 and x = -1.
- (C) P(x) and Q(x) cross at x = -4, x = 2 and are tangent at x = -1.
- (D) P(x) and Q(x) are tangent at x = -4, x = 2 and cross at x = -1.

End of Section I	
------------------	--

SGS Assessment 2017 Form VI Mathematics Extension 1 Page 6 SECTION II - Written Response Answers for this section should be recorded in the booklets provided. Show all necessary working. Start a new booklet for each question. QUESTION ELEVEN (15 marks) Use a separate writing booklet. Marks (a) Write down the exact value of the following. (i) $\tan^{-1} \sqrt{3}$ (ii) $\cos^{-1}\sin\left(\frac{4\pi}{3}\right)$ 2 (b) Find the remainder when $P(x) = x^3 - 3x^2 + 3x - 5$ is divided by x - 1. (c) Find the equation of the tangent to $y = \cos^{-1}(2x)$ at the point $\left(0, \frac{\pi}{2}\right)$. [3] (d) A particle's displacement function is given by $x=4\sin(2t)+1$, where displacement xis in metres and time t is in seconds. (i) Show that the particle moves in simple harmonic motion by showing that 1 $\ddot{x} = -n^2(x - x_0).$ (ii) Write down the centre of motion of the particle. (iii) Between what two values of x does the particle oscillate? 1 (iv) Find the particle's speed when x = 5. Consider the polynomial equation $x^3 + 2x^2 - 3x + 5 = 0$. If the roots of the equation are α , β and γ , find the value of the following. 1 (i) $\alpha + \beta + \gamma$ (ii) $\alpha\beta + \alpha\gamma + \beta\gamma$ (iii) $\alpha\beta\gamma$ (iv) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$ 1

GG	3 As.	sessment 2017 Form VI Mathematics Extension 1 Page 7	
QU	ES3	TION TWELVE (15 marks) Use a separate writing booklet.	Marks
(a)	Div form	ide $P(x) = 2x^3 + 3x^2 + 12x + 16$ by $D(x) = x + 3$ and express your answer in the $P(x) = D(x)Q(x) + R$, where $Q(x)$ is the quotient and R is the remainder.	2
(b)	(i)	Prove that $(\cos x + \sin x)^2 = 1 + \sin 2x$.	1
•	(ii)	Hence find $\int_0^{\frac{\pi}{4}} \sqrt{1+\sin 2x} dx$.	2
(c)	The	e polynomial $P(x) = x^3 - 6x^2 + kx + 14$ has a zero at $x = 1$.	
	(i)	Show that the value of k is -9 .	1
	(ii)	Fully factorise $P(x)$.	2
	(iii)	Sketch $y = x^3 - 6x^2 - 9x + 14$.	1
	(iv)	Hence solve $x^3 - 6x^2 - 9x + 14 > 0$.	1
(d)	with	all is projected horizontally from the top of a vertical cliff 120 m above the ground a initial velocity 30 ms ⁻¹ . Let acceleration due to gravity be 10 ms ⁻² downward the base of the cliff be the origin. You may ignore air resistance.	•
	(i)	Starting with $\ddot{x}=0$ and $\ddot{y}=-10$, derive equations for the horizontal and vertical components of displacement.	2
	(ii)	How far from the base of the cliff does the ball land? Leave your answer in exact form.	2
	(îii)	What is the exact speed of the ball when it hits the ground?	1
		-	

QU	ESTION THIRTEEN (15 marks)	Use a separate writing booklet.	Mark
(a)	A particle is moving horizon time t seconds it has displace	tally in sime x me	ple harmonic motion about the origin O , stres from O given by $x = \cos 2t - \sin 2t$.	At
	(i) Express x in the form R	$2\cos(2t+\alpha)$) for $R > 0$ and $0 < \alpha < \frac{\pi}{2}$.	2
	(ii) Find the amplitude and	period of t	he motion.	1
	(iii) Find the maximum velo	city of the	particle.	2
(b)	A particle moves with veloci Initially the particle is at the		$-x)^2$ ms ⁻¹ , as a function of displacement	. x.

(iii) Find the time taken for the particle to slow down to a speed of 1% of its initial 2

(i) Find an expression for acceleration in terms of x.

(ii) Show that $t = \frac{1}{1 - x} - 1$.

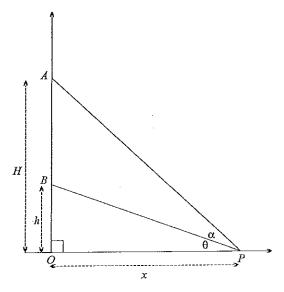
speed.

SGS Assessment 2017 Form VI Mathematics Extension 1 Page 8

SGS Assessment 2017 Form VI Mathematics Extension 1 Page 9

QUESTION THIRTEEN (Continued)

(c) The diagram below shows the point P on the horizontal axis, a variable distance x from the origin O. The points A and B are fixed points on the vertical axis, with distances H and h respectively from the origin O.



Let $\angle BPO = \theta$ and $\angle APB = \alpha$.

(i) Show that
$$\alpha = \tan^{-1} \left(\frac{H}{x} \right) - \tan^{-1} \left(\frac{h}{x} \right)$$
.

 $\tan^{-1}\left(\frac{H}{x}\right) - \tan^{-1}\left(\frac{n}{x}\right).$ [1]

- (ii). Show that α is a maximum when $x^2 = Hh$. You do not need to justify that it is a maximum.
- (iii) Using the expansion of $\tan(A-B)$, show that the maximum value of α occurs for $\tan \alpha = \frac{\sqrt{Hh}(H-h)}{2Hh}$.

SGS Assessment 2017 Form VI Mathematics Extension 1 Page 10

QUESTION FOURTEEN (15 marks) Use a separate writing booklet.

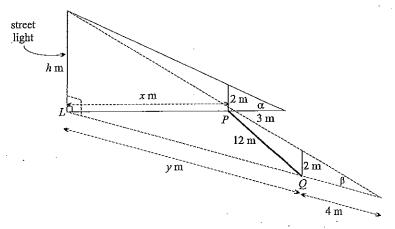
Marks

2

(a) (i) Find the derivative of the function $x \cos^{-1} x - \sqrt{1-x^2}$.

(ii) Hence evaluate
$$\int_{0}^{1} \cos^{-1} x \, dx$$
.

(b) A two metre tall man casts a shadow by a street light h metres high at L. At P, x metres due East of L, his shadow is 3 metres long. He walks 12 metres on a bearing of 150°T to a point Q. At Q, y metres from L, his shadow is 4 metres long. The angles α and β are shown on the diagram.



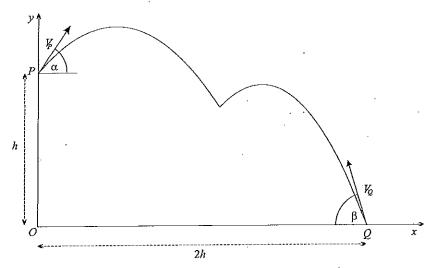
- (i) Write an equation for x in terms of h.
- (ii) Write an equation for y in terms of h.
- (iii) Find the height of the street light correct to one decimal place.

|3|

SGS Assessment 2017 Form VI Mathematics Extension 1 Page 11

QUESTION FOURTEEN (Continued)

(c) Two points O and Q are 2h metres apart on horizontal ground. The point P is h metres directly above O. A particle is projected from P towards Q with speed $V_P \, \mathrm{ms}^{-1}$, inclined at an angle α above the horizontal. At the same time another particle is projected from Q towards P with speed $V_Q \, \mathrm{ms}^{-1}$, inclined at an angle β above the horizontal. The two particles collide T seconds after projection.



(i) For the particle launched from P, the acceleration equations are $\ddot{x}_P = 0$ and $\ddot{y}_P = -g$. Show that at time t seconds, the respective horizontal and vertical distances from O, x_P and y_P are:

$$\begin{split} x_P &= V_P t \cos \alpha \\ y_P &= -\frac{1}{2} g t^2 + V_P t \sin \alpha + h. \end{split}$$

(ii) Write down the respective horizontal and vertical distances from O for the particle launched from Q.

(iii) Show that
$$\frac{V_P}{V_Q} = \frac{2\sin\beta - \cos\beta}{2\sin\alpha + \cos\alpha}$$
.

End of Section II

Extension / Solutions	2 0 2 5 6 4 2 5 6		
Question 1	$x^3 - 2x^7 + 5 = 0$	oc= y (2-x)	Question 9
$y = x(x-2)^3(x+1)^2$	Question 5	$y = \frac{2}{2-2i}$	$\int_0^k \frac{1}{\sqrt{4-x^2}} dx = \frac{7\pi}{3}$
double zero at x=-1 triple zero at x=2	$tan 20=1$ $0 \le 0 \le 2\pi$ $0 \le 20 \le 4\pi$	$f^{-}(x) = \underbrace{x}_{2-x}$	$\int_{0}^{k} \frac{1}{\sqrt{4-3\ell^{2}}} = \left[\frac{S/\Lambda^{-1}(\frac{\chi}{2})}{2}\right]_{0}^{k}$
B	$20 = \frac{\pi}{4}, \frac{5\pi}{4}, \frac{9\pi}{4}, \frac{13\pi}{4}$	$f^{-1}(4) = \frac{4}{2-4}$	$= \sin^{-1}\left(\frac{k}{2}\right) - \sin^{-1}\left(0\right)$
Ocustion 2		z - 2 D	$\sin^{-1}\left(\frac{h}{2}\right) = \frac{\pi}{3}$
$K = 2s_{11}3t$ $amp = 2 T = 2\pi$	$\theta = \pi + \frac{5\pi}{8}, \frac{9\pi}{8}, \frac{13\pi}{8}$ $01 02 03 04 D$	Question 8	$\frac{k = \sqrt{3}}{2}$
	Question 6	P(x) = (x-2)(x+2)Q(x) + 2x-1	h=13 (C)
Questo n3	$\frac{d}{dx} \tan^{3} 3x$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Question 10 Double Zero at x=-1
The only force acting is in the westical direction so	$\frac{1+9x^2}{1+9x^2}$	2x-4 3	tells us the curves are target single zero at $\alpha = -4$
all stores will land at the same time (D)	Question 7 $f(x): y = 2x$	Remainder is 3	indicates the curves cross
Mankank	$f'(x) \mathcal{X} = \frac{2y}{4x^{2}}$	alternatively $R(x)=2x-1$ $R(2)=2\times 2-1$	(C)
Question4 K+B+X=-b & B+XX+BB=C &BI=d	xy + x = 2y $x = 2y - xy$	(\hat{c})	
$b=-2 c=5 d=2$ $\alpha=1$	• • • • • • • • • • • • • • • • • • •		
ı	<i>₹</i>		1 25.06

Question !! $y = -2x + \pi$ a)i) tan 1/3 = 11/3 d) i) $x = 4 \sin \lambda t + 1$ ii) cos sin/411) i = 8 cos2t $\dot{x} = -16\sin 2t$ $\dot{x} = -4(4\sin 2t + 1 - 1)$ = $\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ $\dot{x} = -4(2(-1)) \sqrt{skow}$ which is in the form b) By remainder Hueonem Remainder = P(1) So the particle is in SHM. ii) The centre of motion is x=1/m. P(1)=13-3x/2+3x1-5 V iii) The amplitude is 4 so the perfect oscillates between x=-3 and $\alpha=5$ The remainde is -4V iv) 2 = 5 is an extremity. The speed is zero of Oms c) $y = \cos^{3}(2x)$ $\frac{dy}{dsc} = \frac{-2}{\sqrt{1-4sc^2}} /$ e) $x^3 + 2x^3 - 3x + 5 = 0$ at x=0 $M_T=-2$ i) x + B + Y = - b $y - \pi = -2(x-0)$ ii) db+ dx+B8=C

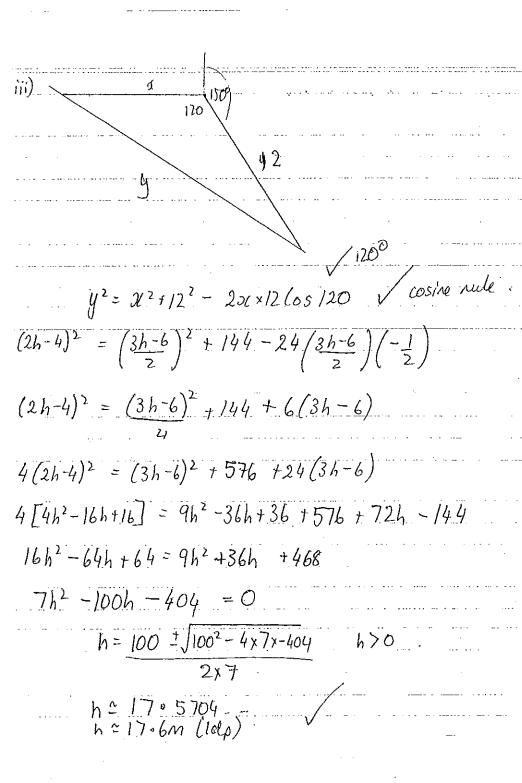
iii) x & y = 1 - d = dbfdr br

Question 12 = [sin # - cos #] - [sin 0 - cos 0] $2x^2-3x+21$ - [法-元] - [0-1] $(x+3) 2x^3 + 3x^2 + 12x + 16$ $2x^3 + 6x^2$ at $t = 2\sqrt{6}$ -3x2+12x+16 c)i) P(x)= x3-6x2+kx+14 $-3x^2 - 9x$ $3c = 30 \qquad \dot{y} = -20\sqrt{6}$ p(1)=0 2126 +16 0=13-6x12+k+14 2/21 +63 je = 30 division $V^2 = 30^2 + (20\sqrt{6})^2$ (solid attempt) i) $\dot{x} = 0$ k=-9 as required $V^2 = 3300$ x=sodt y= f-10 dt 1VI = 10 \(\bar{13} \) ms-1 P(x)=(x+3)(2x2-3x+21) ii) P(2) = -20at t=0 x=30 =-10t+C3 b)i) LHS = (cosx +sinx)2 The speed when the ball lands Vor division t=0 y=0 G=0 = CO5 21 + 25in X COSX + Sin21 û =30 .. y = -10t 15 10/33 M57 = 1 t 2 sinx cosx = 1+ Sin2x Show (Show) X = \int 30old = 30t+C2 y = f-10+ dt The factors are (x+2) and (x-7) = RHS as required $= -5t^2 + Cy$ t=0 x=0 G=0 t=0 y= 120 $P(x) = (x-1)(x+2)(x-7) \vee$ so (cos x +sinx) = 1+51121 1/1+ Sin2or dol must be derived, penalise for om thing constants ii) we want y=0 = ["14 / (cosx+sinx) do $-5t^2+120=0$ from port i) 5+2 = 120 12 = 14 = [" COSN + Sinor da t=12/6 s (t70) = [sinx -cosx] "4V When t=256 V oc= 30x256 iv) {x; 2<x<| or x>731 accept t= 54. from My graph The ball lands 6016 M from

Question 13 (b) i) $V = (1 - x)^2$ In A AOP a) i) $x = R\cos(2t t_d)$ $tan(\alpha + \theta) = H$ V2= (1-21)4 x = Rcos2t cos & - Rsin2tSin & iii) at t=0 x=0 so
initially V = (1-0) $d+0 = \tan^{-1}\left(\frac{H}{x}\right)$ So equating coefficients $= \frac{d}{dx} \left(\frac{1-x}{2}\right)^{\frac{1}{4}}$ Rossd= / Rsind=/ $\int d = \tan^{-1}(\frac{H}{2}) - 0$ = 4(1-21)3 x -1 Show R2052 & + RSin2d = 1+1 $\alpha = \tan^{-1}\left(\frac{H}{2}\right) - \tan^{-1}\left(\frac{h}{2l}\right)$ We want v=1% of1 $R = \frac{1}{2}\sqrt{2}$ R>0 as required. 0.01 = (1-X) Rsind -Alternate working ii) To maximise & , solve Reosd 1-21=+0.1 X = V · dv tand = 1 26 = 0.9 or /./ $= (1-x)^2 \times 2(1-x) \times (-1)$ $d = \tan^{-1}\left(\frac{h}{\sigma_{\ell}}\right) - \tan^{-1}\left(\frac{h}{\sigma_{\ell}}\right)$ when x=0.9 / $\partial C = \sqrt{2} \cos \left(2t + \frac{T}{4}\right)$ V= (1-7)2 ii) amplitude is $\sqrt{2}$ metres. Period is $2\pi = \pi$ seconds $\frac{dx}{dt} = (1-x)^2$ $\frac{ctt}{ctx} - (1-3t)^{-2}$ # (multiply through by x12) enpues as dt ds. rintegral iii) maximum velocity. reach 1% of initia, $\dot{S} = -2\sqrt{2}Sin(2tt^{\#})$ alternate wesking Some = 0 In SBOP maximum velocity is 2/2 ms-1 $tan \theta = h$ Fylifferentiale & 0 = far 1/h V eguate-to zero

evaluate

·	Question14	
$hx^{2} + hH^{2} - Hx^{2} - Hh^{2} = 0$ $x^{2}(h-H) = Hh^{2} - hH^{2}$ $x^{2} = Hh(h-H)$	a) $\frac{d}{dx} \propto \cos^3 x - \sqrt{1-x^2}$	b)i) $tan x = h$ $tan a = 2$
(h-H) Simplify expression	$u=3i V=\cos^{-1}3i$ $u'=1 v'=-1$ $\sqrt{1-x^{2}}$	equating
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$\frac{d \times \cos^{-1} x - \sqrt{1-3/2}}{\cos x} = \cos^{-1} 21 - \frac{1}{2} \left(1-x^{2}\right)^{\frac{1}{2}} x - 2x$	$\frac{2}{3} = \frac{h}{2t+3}$ $\frac{2}{3} = \frac{3}{2t+3}$ $\frac{2}{3} = \frac{3}{3} + \frac{6}{3}$ $3 = \frac{3}{4} + \frac{6}{2}$
$tand = \frac{Hx - hx}{x^2 + Hh}$	$= \cos^{-1}\alpha - \frac{\chi}{\sqrt{1-3\ell^2}} + \frac{\chi}{\sqrt{1-3\ell^2}}$	ii) $tan \beta = \frac{h}{y+4}$ $tan \beta = \frac{2}{2} = \frac{1}{2}$
$tand = \frac{x(H-h)}{Hh + Hh}$ $\left[3c^2 = Hh \text{ part ii}\right]$ $tand = \sqrt{Hh}(H-h)$ $\left[\chi = \sqrt{Hh} \text{ part ii}\right]$	$= \cos^{-1} x$ $\int_{0}^{\infty} \cos^{-1} x$	equating.
ton $d = \sqrt{Hh} \left(H - h \right)$ $\left[\chi = \int Hh \ part \ ii \right]$ as required as required	$= \left[\frac{1}{2} \cos^{-1} x - \sqrt{1 - 1^{2}} \right]_{0} - \sqrt{1 - 0}$	$y+4 \qquad 2$ $2h = y+4$ $y = 2h-4$
		Accept similar triongle waling



At
$$P$$
:

c) initially $x \neq 0$ $y = 2h$

$$\dot{x} = 0 \\
\dot{x} = \int 0 \text{ odd} \qquad \dot{y} = V_{p} S \sin^{2} \theta$$

$$\dot{x} = \int 0 \text{ odd} \qquad \dot{y} = \int g \text{ dt}$$

$$= C, \\
t = 0 \quad \dot{y} = V_{p} C \cos \theta$$

$$\dot{x} = V_{p} C \cos \theta$$

$$\dot{x} = \int V_{p} C \cos \theta$$

$$\dot{x} = \int V_{p} C \cos \theta$$

$$\dot{y} = -gt + V_{p} S \sin \theta$$

$$\dot{x} = \int V_{p} C \cos \theta$$

$$\dot{y} = -gt + V_{p} S \sin \theta$$

$$\dot{y} = -gt + V_{p} S \sin \theta$$

$$\dot{y} = -gt^{2} + V_{p} t S \sin \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \sin \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \sin \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \sin \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \sin \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \sin \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \sin \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \sin \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \sin \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \sin \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \sin \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \sin \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \sin \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \sin \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \sin \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \sin \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \sin \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \sin \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \sin \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \sin \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \sin \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \sin \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \sin \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \cos \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \cos \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \cos \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \cos \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \cos \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \cos \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \cos \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \cos \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \cos \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \cos \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \cos \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \cos \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \cos \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \cos \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \cos \theta + C_{q}$$

$$\dot{y} = -gt^{2} + V_{p} t S \cos \theta + C_{q}$$

$$\dot{$$

$$y_{\alpha} = -Vatcos\beta + 2h$$
 $y_{\alpha} = -\frac{gt^2}{2} + Vatsin\beta$

V. T Cosd + VaT CosB = 2 VaTSinB - 2 VpTSind

Vp Cost +2Vp Sind = 2 Va Sinp - Va Cosp

as required.

alterate working accepted