Part B – Calculator

Section II - Measurement (23 marks)

1.

2. Convert the following units.

[2]

a)

b)

$$2 \cdot 3m^2 = \frac{1}{m^2}$$

- 3. The water from a flat rectangular roof 12m×15m is collected in a cylindrical water tank of diameter 2·2m.
- a) If 10mm of rain falls on the roof, find the [1] volume of water which has fallen on the roof.

b) What is the rise in the water level of the tank when this volume of water is collected? (nearest cm) [2]

c) The cylindrical water tanks is 1.5m high. The curved part of the tank is to be painted with rust proofing. What is the area to be painted to the nearest m²?

4. Answer each of the following.

a) Given $\tan \theta^{\circ} = \frac{26.1}{8.7}$, find θ° to the nearest minute. [1]

NAME:

CLASS:

[2]

b) Find x to 1 decimal place.

_		
	\boldsymbol{x}	
	58°13'	

c) Find θ° to the nearest degree. [2]

5. If $\sin \theta = \frac{1}{4}$, find the exact value [2] of $\cos \theta$.

Part B - Calculator

- 6. An observer, from the top of a building 66 metres high, finds the angle of elevation of the top of a taller building to be 34°. The angle of depression of the foot of the same building is 51°.
- a) Mark all the given information on the diagram given below. [1]

b)

(i) Find the distance between the two buildings. to the nearest m [2]

(ii) Find the height of the taller building. [2]

7. A ship leaves port O and travels 380km on a bearing of 145° to port A.

a) Put this information on the diagram. [1]

b)	How far East of port O is port A?	[2]
	Answer to the nearest km	
		The state of the s
c)	What is the bearing of O from A?	[1]
	Answer to the nearest degree	-
-	· ·	And the state of t
_		
İ		

Section III – Algebra (43 marks)

1.	Simplify	$9p-3p\times 2$.

[1]

2.	Expand and simplify
	(5 - 1 2)/4 1) /

(5g+3)(4g-1)-(g+2)(g-2).

[2]

3. If y = 7 + 5(4 - x), find x, when y = 0. [2]

4. Solve $\frac{2x+3}{3} - \frac{3x+1}{4} = 2$. [3]

5. Solve $4 - 3x \le 9$.

[1]

6. Use an equation to solve this problem. "A number is increased by 5 and then trebled. The result is 6 more than two thirds of the number. Find the number". [3]

•	
*	

NAME:

CLASS:

7. The velocity of an object is given by $v^2 = u^2 + 2as$. Find u when v = 13, a = 6 and s = 12. [1]

For the points A (3,-1) and B (-5,0), find...

The gradient of AB.

[1]

b) The distance AB.

[1]

c) The midpoint of AB.

[1]

d) The equation of the line which passes through A and B. Give your answer in general form.

e) Where does the line AB cross the x-axis?

[1]

f) Find the equation of the line parallel to AB which also passes through the point (0,8).

[2]

Part B – Calculator

9. Find k if 2x + ky = 5 is perpendicular to x - 3y = 11.

[2]

- b) Hence shade the region where $2x + y \le 6$. [1]
- c) Clearly indicate on the number plane [3] the region where $2x + y \le 6$ and x < 4are both true.
- 11. Factorise fully...
- a) xp + 2x yp 2y

[1]

[1]

b) $x^2 - 5x - 6$

[1]

c)	$5x^2 + 7x - 6$	٠.	[1]
_		:	
	,	•	

- d) $2x^3 18x$ [2]
- 12. Simplify...

2

3

a)
$$\sqrt{\frac{2a^2x}{5}} \times \frac{10}{4ax^2}$$

[1]

b)	$\frac{x-2}{3x^2-6x}$	[2]
<i>/ -</i> -		

i	c)	$\frac{x^2-25}{3x^2+15x}$	$\frac{x^2-4x-5}{x^2+x}$	[3]
	-		¢	

a)	$\overline{x^2-x}$ $\overline{x^2-1}$	I	[3]
· -	•	,	
-			
İ			

END of EXAMINATION

Part B - Calculator

Section II - Measurement (23 marks)

1. 2. Convert the following units. [2]

degrees

b) $2.3\text{m}^2 = 23.000$

- 3. The water from a flat rectangular roof 12m×15m is collected in a cylindrical water tank of diameter 2.2m.
- a) If 10mm of rain falls on the roof, find the [1] volume of water which has fallen on the roof.

1200 cm x 1500 cm x 1 cm = 1800 000 cm3 = 1800 L

b) What is the rise in the water level of the tank when this volume of water is collected? (nearest cm) 18001

1800 cm = 18m

c) The cylindrical water tanks is 1.5m high. The curved part of the tank is to be painted with rust proofing. What is the area to be painted to the nearest m²?

2× 11 ×1.5 = 10 m2 (nearest m2

- 4. Answer each of the following.
- a) Given $\tan \theta^{\circ} = \frac{26.1}{8.7}$, find θ° to the nearest

6°=71034' (nearest minute)

NAME: Shaun Por

CLASS: 9MAA b) Find x to 1 decimal place.

(05 58° 13) = 11 X = (05 58°13 = 20_9 (1 dec.pl) c) Find θ° to the nearest degree. [2]

Sin 8 = 24.3 0 = 33° (nearest degree

5. If $\sin \theta = \frac{1}{2}$, find the exact value [2] of $\cos \theta$.

Year 9 Stage 5.3 Examination

Part B - Calculator

- 6. An observer, from the top of a building 66 metres high, finds the angle of elevation of the top of a taller building to be 34°. The angle of depression of the foot of the same building is
- a) Mark all the given information on the diagram given below.

b)

(i) Find the distance between the two buildings. to the nearest m

$$tan 51° = \frac{66}{50}$$

$$x = \frac{66}{tans1}°$$

$$= 53 m (nearest m).$$

(ii) Find the height of the taller building. tan 340 = 4 4 = fan 34° x 53

= 35.75m (2dec.pl) 66m+35-75m=101.75m (2 dec.ol)

- 7. A ship leaves port O and travels 380km on a bearing of 145° to port A.
- a) Put this information on the diagram.

- b) How far East of port O is port A? [2] Answer to the nearest km $\cos 55^{\circ} = \frac{\pi}{380}$ oc= cos 55° < 380 =218 km (nearest km
- c) What is the bearing of O from A? Answer to the nearest degree LOAE = 180°-90°- 55° = 35° - Bearing of O from Ats 325° or N35°W

Year 9 Stage 5.3 Examination Part B - Calculator

Section III – Algebra (43 marks)	
1. Simplify $9p-3p\times 2$. $= 9p-6p$	[1]
= 30	
2. Expand and simplify $(5g+3)(4g-1)-(g+2)(g-2)$.	[2]
$=(20a^2-5a+12a-3)-(a^2-2a+2a-4)$	

, , , , , , , , , , , , , , , ,	
$=(20g^2-5g+12g-3)-($	q2-29+29-4
$=(20g^2+7g-3)-(c$	32-4)
$=20g^2+7g-3-g^2+4$	
$=19g^2+7g+1$	V 2
3. If $y = 7 + 5(4 - x)$, fi	nd x, when $y = 0$. [2]

0 = 7 + 20 - 5x	
0 = 27 - 5x	
500=27	
x=끝 =5音	Vd

4. Solve $\frac{2x+3}{3} - \frac{3x+1}{4} = 2$. $= \frac{4(2x+3) - 3(3x+1)}{12} = 2$	[3]

8>(+12-9>(-3=24	
-x+9=24	
-x=(B)	2.
JC=-13	2

5. Solve $4-3x$:	≤9.	[1]
-5 ≤ 3 _{0C}	1- >c ≥ - \frac{5}{3}	1.
3χ≥-5	x>-1=	VI

6.	Use an equation to solve this problem.	
	"A number is increased by 5 and then:	trebled
	The result is 6 more than two thirds of	the
	number. Find the number".	[3]

mamoor. I mid tije j	uumber.	[3]
$3(x+5) = \frac{2}{5}x+6$		
3)(+15 = = 3x+6		
9x+45 = 2x +18	/	
75c = -27	$\sqrt{3}$	
X=-끝	10	

= - 3 5

NAME:	Shaun	Por
_		

CLASS: 9MAA
7. The velocity of an object is given by
$v^2 = u^2 + 2as$. Find u when $v = 13$, $a = 6$ and $s = 12$
, 1
$13^2 = u^2 + (2 \times 6 \times 12) u^2 = 25$
$169 = u^2 + 144$ $u = \sqrt{25} = 5$ or -5

8.	For the points A	(3,-1)	and B	(-5,0),	find
----	------------------	--------	-------	---------	------

8. For the points A $(3,-1)$ and B $(-5,0)$,	, find
a) The gradient of AB.	[1]
$m = \frac{x_1 - x_2}{x_1 - x_2}$	
$W = \frac{(-2) - 9}{(-2)} = \frac{(-8)}{1} = -\frac{1}{8}$	
b) The distance AB.	[1]
$d = \sqrt{(\chi_2 - \chi_1)^2 + (y_2 - y_1)^2}$	
$d = \sqrt{(-5-3)^2 + (0-(-1))^2}$	
$= \sqrt{(-8)^2 + 1^2} = \sqrt{64 + 1} = \sqrt{65} \text{ units}$	
c) The midpoint of AB.	[1]
$M = \left(\frac{x_1 + \lambda x_2}{2}, \frac{y_1 + y_2}{2}\right)$	
$M = \left(\frac{3 \div (-5)}{2}\right) \left(\frac{(-1) \div 0}{2}\right) = \left(\frac{(-2)}{2}\right) \left(\frac{(-1)}{2}\right) = \left(-1\right)$	$,-\frac{1}{2})$
 d) The equation of the line which passes t and B. Give your answer in general for 	hrough A m.

and the four miswer in general form.		
11 = 10 > 1 - 5	-3 5 0	[3]
y=mx(+b	$-\frac{3}{8}x-y-\frac{5}{8}=0$	
$-1=(3x-\frac{1}{8})+b$	$\frac{3}{8}X + 4 + \frac{5}{8} = 0$	
$-1 = -\frac{3}{8} + 6$	3x+8y+5=0	7.
b = -5		~~
3 5		-) -

e) Where does the line AI	3 cross the x -axis?
5 / 0	, [1]
- 8 V C pe	

	[2]
y=moc+b	
8=0+6	
b=8	
=- \frac{1}{2}x+8 VW	

Year 9 Stage 5.3 Examination

Part B - Calculator

9. Find k if $2x + ky = 5$ is perpendicular to		
x-3y=11.	[2]	
ky =5-230	$-\frac{2}{3R} = -1$	
$\frac{ky = 5 - 2}{5}$ $y = k - \frac{2}{k}$	$\frac{2}{3k} = 1$	
3y = >c-11	2=3k	
$y = \frac{1}{3}(-\frac{11}{3})$	$k = \frac{2}{3}$	
$\frac{1}{3} \times \frac{2}{R} = -1$	V L	

10. On the number plane below...

b)
$$x^2 - 5x - 6$$
 [1] = $(x + 1)(x - 6)$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[1]
$\begin{array}{c} = (5x-3)(x+2) \\ \text{d}) 2x^3 - 18x \\ = 2x(x^2-9) \end{array}$	[2]
$=2x(x+3)(x-3)\sqrt{2}$	
12. Simplify	
a) $\frac{2a^2x}{5} \times \frac{10^{-2}}{4ax^2}$ $= \frac{9}{5}$	[1]
<u> </u>	
b) $\frac{x-2}{3x^2-6x}$ $= \frac{3x^2-6x}{3x(3x-2x)}$	[2]
$=\frac{1}{3x}$	
c) $\frac{x^2 - 25}{3x^2 + 15x} \div \frac{x^2 - 4x - 5}{x^2 + x} = \frac{(x+5)(x+5)}{3x(x+5)} \div \frac{(x-5)(x+1)}{x(x+1)}$	[3]
33(245) × (245)(241) = 33(241)	
$=\frac{1}{3}$	
V 3	
d) $\frac{2}{x^2 - x} - \frac{3}{x^2 - 1}$ = $\frac{2}{x(x-1)} - \frac{3}{(x+1)(x-1)}$	[3]
$= \frac{2(x+1)-3x}{x(x+1)(x-1)}$	

$=\frac{2}{2(x-1)}-\frac{3}{(x+1)(x-1)}$	
$= \frac{2(x+1)-3x}{x(x+1)(x+1)}$ $= \frac{2x+2-3x}{x(x+1)(x-1)}$ $= x+2$ $= x(x+1)(x-1)$ $= x+2$ $= x(x+1)(x-1)$	13

END of EXAMINATION