
## PAST EXAMINATION QUESTIONS



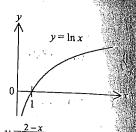
- 2. (i) Solve the equation  $x^2 2\sqrt{3}x 1 = 0$ , giving your answers in their simplest surd form.
  - (ii) The sum of a number and its reciprocal is 4. Find the number and express it in the simplest surd form. (N62/P1B/1i-ii)
- 3. By using the substitution  $u = 3^x$ , or otherwise, solve the equation  $3^{2x+1} + 3^2 = 3^{x+3} + 3^x$ . (N64/P1/5i)
- 4. By means of the substitution  $y = 2^x$ , solve the equation  $2^{2x-1} 9 \cdot 2^{x-2} + 1 = 0$ . (N65/P1/7ii)
- 5. By substituting  $y = 2^x$ , or otherwise, solve the equation  $2^{2x} + 2^{x+2} 4 \cdot 2^3 = 0$ . (N68/P1/7ii)
- 6. Solve the equation  $\sqrt{x+4} + \sqrt{x+10} = \sqrt{8x+18}$ . (J70/P1/5ii)
- 7. Solve the equation  $2^{2x+3} + 2^{x+3} = 1 + 2^x$ . (N71/P1/5ii)
- 8. Using the substitution  $u=2^z$ , or otherwise, solve the equation  $2^{2z}-3 \cdot 2^{z+\frac{1}{2}}+2^2=0$ . (J72//P1/5ii)
- Find the dimensions of the rectangle whose perimeter is of length 8 m and which is such that the sum of the areas of the squares on all four sides is  $17 \text{ m}^2$ . (sp1/6)
- 10. By using an appropriate substitution, or otherwise, solve the equation  $3^{2t+1} + 3^{t+2} = 3\frac{1}{3}$ . (N73/P1/5ii)
- 11. Given that  $\log_2 3 = 1.585$ , calculate, without using tables or a calculator, the value of x for which  $2^{2x-1} = 2^{x-1} + 3$ . (J76/P2/11ii)
- 12. Evaluate x if  $\log_2(1+x) + \log_2(5-x) \log_2(x-2) = 3$ . (N76/P2/13b)
- 13. Solve the equations (a)  $1+\sqrt{x+3} = \sqrt{2x-1}$ . (b)  $\log_2 y^2 = 3 + \log_2 (y+6)$ . (N77/P1/11)
- Find the dimensions of the rectangle whose perimeter is 36 m and which is such that the square of the length of the diagonal is  $170 \text{ m}^2$ , (J78/P1/5)
  - Solve the equation  $\lg y + \lg (2y 1) = .(N78/P2/11b)$
- 16. By using the substitution  $y = 8^x$ , or otherwise, solve the equation  $64^x 8^{x+1} + 16 = .$ (179/P2/16b)
- (a) Solve the equation  $\sqrt{4x-9} = 2\sqrt{x} 1$ . (b) Solve the equation  $7^{x^2} 49^{6-2x} = 0$ . (N80/P2/11a-b)
- 18. Solve the equation  $\frac{6}{\sqrt{x-1}} 2\sqrt{x-1} = 1$ . (J81/P1/11a)
- Find the values of y which satisfy the equation  $(8^y)^y \cdot \frac{1}{32^y} = 4$ . (J82/P1/11b)
- 20. Solve the equation  $3x \sqrt{9x^2 20} = 4$ . (N82/P2/11c)
- 21. Find the value of x which satisfies the equation  $\sqrt{3x-5} \sqrt{x+2} = \sqrt{x-6}$ . (N83/P1/11b)
- 22. Without using tables or a calculator, solve the equation  $3^{y^2+3} = 9^{2y}$ . (J84/P2/11ii)
- 23. Solve the equation  $z + \sqrt{32-z} = 2$ . (N84/P1/11iii)
- 24. Solve the equations (i)  $y = \sqrt{y+9} + 3$ . (ii)  $2 \lg z = \lg(3z+4)$ . (J85/P2/11ii-iii)
- 25. Solve the equation  $\log_2 y^2 = 4 + \log_2 (y+5)$ . (N85/P1/11aii)
- 26. By using the substitution  $y = e^x$ , find the value of x such that  $e^{2x} = e^x + 12$ . (J86/P2/5a)
- 27. Solve the equation  $\log_2 x + \log_2 (6x + 1) = 1$ . (J87/P2/5b)
- 28. Solve the equation  $\lg(x^2 + 12x 3) = 1 + 2 \lg x$ . (N87/P2/5b)
- 29. Solve the equation  $\lg (x^2 2x + 8) = 2 \lg x$ . (J88/P2/4ai)
- 30. (a) Solve the equation  $\lg x + \lg (3x + 1) = 1$ . (b) By using the substitution  $y = e^x$ , find the value of x such that  $8e^{-x} e^x = 2$ . (N88/P2/5b)
- 31. By using the substitution  $u = 2^x$ , solve the equation  $4^x 9(2^x) + 8 = 0$ . (J89/P2/5c)
- 32. By using the substitution  $y = e^{2x}$ , solve the equation  $e^{2x} + 4e^{-2x} = 4$ . (J90/P2/5b)
- 33. Solve  $\log_3(4x) + \log_3(x-1) = 1$ . (N90/P2/5aii)
- 34. (a) Solve the equation  $2 \lg x + \lg 4 = \lg(9x 2)$ . (b) By means of the substitution  $3^x = y$ , solve the equation  $3^{2x} 3^{x+2} + 8 = 0$ , giving answers to two decimal places where necessary. (J91/P2/5a, b)

- 35. Solve the equation  $1 + 2 \lg x = \lg(11x 3)$ . (N92/P2/7a)
- 36. Solve the equation  $\lg (2x) 3 \lg 2 = \frac{1}{2} \lg(x 3)$ . (J93/P2/4b)
- 37. (a) Solve the equation  $2 \lg(x+2) + \lg 4 = \lg x + 4 \lg 3$ . (b) Solve the equation  $2^{2x} 2^{x+3} + 7 = 0$ . (N95/P2/6a, b)
- 38. Given that  $x = \lg a$  is a solution of the equation  $10^{2x+1} 7(10^x) = 26$ , find the value of a. (N97/P2/4c)
- 39. Find the value of x which satisfies the equation  $e^{2x} e^x 6 = 0$ . (J98/P2/5c)
- 40. Solve the equation  $9^{2x} + 2(9^{x+1}) = 40$ . (N99/P2/3b)
- 41. Solve the equation  $3^{2x} 3^{x+1} 10 = 0$ . (J2000/P2/4b)
- 42. Two flower beds, each of which is square, have a combined area of 18.5 m<sup>2</sup>. The sum of the perimeters of the two flower beds is 24 m. Determine the length of the side of each flower bed. (sp1/7)
- 43. Solve the equations
  - (i)  $2 \lg x = 1 + \lg \left(\frac{4x-15}{2}\right)$ ,
  - (ii)  $4^y 7(2^y) = 8$ .

(J2001/P2/3b)

44. Solve the equation

 $\log_3 y + 4 \log_y 3 = 4$ . (J2002/P2/10(b))


- 45. (i) Sketch the graph of  $y = \ln x$ .
  - (ii) Determine the equation of the straight line which would need to be drawn on the graph of  $y = \ln x$  in order to obtain a graphical solution of the equation  $x^2 e^{x-2} = 1$ . (N2002/P2/8)

## TOPIC 6 SOLUTION OF QUADRATIC EQUATIONS

- 2. (i)  $\sqrt{3} \pm 2$ 
  - (ii)  $2 \pm \sqrt{3}$
- 3. x = -1 or 2
- 4. 2, -1
- 5. x = 2
- 6.  $x=2\frac{1}{4}$
- 7. x = -3
- 8.  $z = \frac{1}{2}$  or  $\frac{3}{2}$
- 9. 2.5 m, 1.5 m
- 10. t = -1
- 11. 1.585
- 12. 3
- 13. (a) 13
- 14. 7 m, 11 m
- (b) 12, –4
- 15.  $2\frac{1}{2}$
- 16.  $\frac{2}{3}$
- 17. (a)  $6\frac{1}{4}$
- 18.  $3\frac{1}{4}$
- 19.  $-\frac{1}{3}$ , 2
- 20.  $1\frac{1}{2}$
- 21. 7
- 22. 1, 3
- 23. -4
- 24. (i) y = 7 (ii) z = 4
- 25. -4 or 20
- 26. 1.39
- 27.
- .28.  $\frac{1}{3}$ , 1
- 29. 4

- 30. (a)  $1\frac{2}{3}$ 
  - (b) 0.693
- 31. 0, 3
- 32. 0.347
- 33.  $1\frac{1}{2}$
- 34. (a)  $\frac{1}{4}$ , 2
  - (b) 0, 1.89  $y = \ln x$
- 35.  $\frac{1}{2}$ ,  $\frac{3}{5}$
- 36. 4, 12
- 37. (a)  $\frac{1}{4}$ , 16
  - (b) 0, 2.81
- 38. a = 2
- 39. x = 1.10
- 40. 0.315
- 41. x = 1.46
- 42. The lengths are 2.5 m and 3.5 m
- 43. (i) x = 5 or 15
  - (ii) y = 3
- 44. y = 9

45. (i)



(ii)  $y = \frac{2-x}{2}$