Exercise 7.16

1. Write down the equations of the asymptotes of each of the following curves.

$$(a) \quad y = \frac{2}{1 - x}$$

(b)
$$y = \frac{x}{1 - x}$$

(c)
$$y = \frac{x+1}{x^2}$$

(d)
$$y = \frac{x-3}{x-4}$$

(e)
$$y = \frac{x}{2x + 3}$$

2. Determine the behaviour of y as $x \to \infty$ and $x \to -\infty$ if

(a)
$$y = \frac{x}{1 + x^2}$$

(b)
$$y = x^2 e^{-x}$$

(c)
$$y = x \ln x$$

(d)
$$y = x^3 + x - 3$$

(e)
$$y^2 = 4ax$$

3. Sketch the graphs of the following functions, showing clearly any asymptotes, turning points, points of intersection with the axes and the behaviour of the curve when x and/or y are very

(a)
$$y = \frac{2}{1-x}$$

(b)
$$y = \frac{x}{1 - x}$$

(c)
$$y = \frac{x-3}{x-4}$$

(d)
$$y = x^2 e^x$$

(b)
$$y = \frac{x}{1-x}$$
 (c) $y = \frac{x-3}{x-4}$
(e) $y = x^3 + 2x^2 - x - 2$ (f) $y = \frac{3x}{x-4}$

(f)
$$y = \frac{3x}{x - 4}$$

- (g) $y = \frac{e^x}{x}$
- 4. Find the turning points on the curve with the equation $y = 4e^{4x} + 9e^{-x}$. Hence, sketch the curve
- Find the x-coordinate of the point on the curve

$$y = \frac{\ln x}{x^2} \ (x > 0)$$

for which $\frac{dy}{dx} = 0$ and determine whether it is a maximum or minimum point. Sketch the curve for x > 0.

[You may assume that $y \to 0$ as $x \to \infty$]

- **6.** For the curve with the equation $y^2 = x(2-x)^2$,
 - (a) state the axis of symmetry of the curve,
 - (b) show that there is no point on the curve for which x is negative,
 - (c) find the coordinates of the points on the curve at which the tangents are parallel to the
 - (d) sketch the curve.
- 7. Sketch the graph of the following functions on separate diagrams.

(a)
$$y = x^2 + 2$$

(b)
$$y = \frac{1}{x^2 + 2}$$

State the coordinates of the turning points for both curves.

For (b), show the behaviour of the curve for large positive values of x and large negative values

- 8. (a) Find the equations of the asymptotes of the curve whose equation is $y = \frac{x+2}{x-3}$.
 - (b) Find the points of intersection of the curve with the coordinate axes. Find also the stationary points of the curve.
 - (c) Sketch the curve.
- 9. If $y = \frac{3(x-2)}{x(x+6)}$, find $\frac{dy}{dx}$ and deduce the values of x when $\frac{dy}{dx} = 0$. Determine the nature of these points. Sketch the graph showing the above properties and the asymptotes.
- 10. Find the coordinates of the turning point on the curve $y = e^x + 2e^{-x}$ and show that it is a minimum turning point. Sketch the curve.

11. Given that $f(x) = 6x^2 + x - 12$, find the minimum value of f(x) and the values of x for which f(x) = 0.

Using the same axes, sketch the curves y = f(x) and $y = \frac{1}{f(x)}$, labelling each curve clearly.

- Given that $y = \frac{x-3}{x-4}$,

 - find the equation of the tangent to the curve at the point (6, 1.5),
 - (c) find the equation of the normal to the curve at the point (5, 2),
 - (d) use your answer from (a) to deduce that the curve has no turning points and sketch the

13. For the curve $y = x^p e^{-\frac{1}{2}x}$, where p is an integer greater than 1, find the value of p when

(a) $\frac{dy}{dx} = 0$,

(b) $\frac{d^2y}{dx^2} = 0$.

Sketch the graphs of the functions $y = x^2 e^{-\frac{1}{2}x}$ and $y = x^3 e^{-\frac{1}{2}x}$, showing clearly the turning point, point of inflexion and the behaviour of the curve when $x \to \pm \infty$.

Exercise 7.16

- **1**. (a) x = 1, y = 0

- 3. (a)

- (b)
- (c) $\left(0, \frac{3}{4}\right)$
- (d) max. point

- (g)
- **4.** $(\frac{2}{5} \ln \frac{3}{4}, 12.6)$
- **5.** $X = e^{\frac{1}{2}}$ maximum

- 8. (a) y = 1, x = 3
 - (b) (-2, 0), $(0, -\frac{2}{3})$; No stationary point

- **9.** $-\frac{3(x+2)(x-6)}{x^2(x+6)^2}$; x=-2, 6 $\left(-2, \frac{3}{2}\right)$ minimum, $\left(6, \frac{1}{6}\right)$ maximum

10. $(\frac{1}{2} \ln 2, 2\sqrt{2})$

11. $-\frac{289}{24}$, $-\frac{3}{2}$, $\frac{4}{3}$

- **12.** (a) $-\frac{1}{(x-4)^2}$

- **13.** (a) x = 0, x = 2p
- (b) x = 0 and $2(p \pm \sqrt{p})$

- **6.** (a) *x*-axis
 - (c) $(\frac{2}{3}, \frac{4}{3}\sqrt{\frac{2}{3}}), (\frac{2}{3}, -\frac{4}{3}\sqrt{\frac{2}{3}})$

7. (a)

(b)

