- 1. Draw, on graph paper, the graph of $y = 1 \left| x \frac{3}{2} \right|$ for $0 \le x \le 3$. (N93/P1/17b)
- 2. Solve the simultaneous equations 3x 2y = 13, |x + y| = 1. (J94/P1/16c)
- 3. Solve the equation |2x 3| = 3x. (N94/P1/11c)
- 4. Draw on graph paper the graph of y = |5 3x| + 2 for $0 \le x \le 4$. Find the range of values of x for which (i) $y \le 4$, (ii) $y \le 3$. (J95/P1/17b)
- 5. Using graph paper, draw, on the same diagram, the graphs of y = 2 |x-2|, $y = \frac{1}{2}x + 2$, for $-1 \le x \le 5$. How many pairs of values, (x, y) satisfy both equations? (N95/P1/10)
- 6. Find the distance between the two points of intersection of the graphs of y = |x 1| and $y = -\frac{1}{2}x + 5$. (N96/P1/12a)
- **7.** Sketch the graphs of 3y = 4x + 2 and 3y = |4x 8| on the same diagram. Solve the simultaneous equations 3y = 4x + 2, 3y = |4x 8|. (N97/P1/17b)
- **3.** Using graph paper, draw accurately on the same diagram, for $-3 \le x \le 3$, the graphs of 2y = |x-2| and y = x + |2x|. On each axis use 2 cm to represent one unit. Hence, or otherwise, solve the equation $\frac{|x-2|}{2} = x + |2x|$. (J98/P1/16b)
- Q. Sketch the graph of y = 3 |3 2x| for $-1 \le x \le 4$ and state the values of x for which y > 1. (J99/P1/17b)
- 10. Draw on graph paper, using a scale of 2 cm for 1 unit on each axis, the graph of y = |5 2x| 2, for $0 \le x \le 5$. Find the range of values of x for which (a) y is negative, (b) $|y| \le 1$. (J2000/P1/16b)
- (1) Sketch, on the same diagram, the graphs of y = |x| + 1 and y = |2x 3|.
 - (ii) State the number of solutions of the equation |2x-3| = |x| + 1. (J2002/P2/2)
- 12. (i) Sketch the graph of $y = \ln x$.
 - (ii) Determine the equation of the straight line which would need to be drawn on the graph of $y = \ln x$ in order to obtain a graphical solution of the equation $x^2 e^{x-2} = 1$. (N2002/P2/8)

2.
$$x=3, y=-2; x=2\frac{1}{5}, y=-3\frac{1}{5}$$

3. $\frac{3}{5}$

$$3. \frac{3}{5}$$

4. (i)
$$2\frac{1}{3} \ge x \ge 1$$

(ii) $2 \ge x \ge 1\frac{1}{3}$
5. None

(ii)
$$2 \ge x \ge 1^{-\frac{1}{2}}$$

$$7 \cdot x = \frac{3}{4}, y = 1\frac{2}{3}$$

$$8 \cdot -2, \frac{2}{7}$$

$$a_1$$
, $2\frac{1}{2} > x > \frac{1}{2}$

$$\mathbf{q}, 2\frac{1}{2} > x > \frac{1}{2}$$
 $\mathbf{vo}, (i) \quad 1.5 < x < 3.5$

(ii)
$$1 \le x \le 4$$

(ii) Two solutions

12. (i)

(ii) $y = \frac{2-x}{2}$