Revision Exercise ...

1. Find the following indefinite integrals.

(a)
$$\int \frac{1}{2x-9} \, \mathrm{d}x$$

(b)
$$\int \frac{2x+3}{3x^2+9x-1} dx$$
 (c) $\int \frac{e^{3x}+4}{e^{2x}} dx$

$$(c) \int \frac{e^{3x} + 4}{e^{2x}} dx$$

(d)
$$\int \frac{x}{\sqrt{2x-1}} dx$$
 (e) $\int \frac{x}{\sqrt{4-x^2}} dx$ (f) $\int x^2 e^{-x^3} dx$

(e)
$$\int \frac{x}{\sqrt{4-x^2}} dx$$

(f)
$$\int x^2 e^{-x^3} dx$$

(g)
$$\int \frac{x+1}{x(2x+1)} dx$$

(g)
$$\int \frac{x+1}{x(2x+1)} dx$$
 (h) $\int \frac{x(2x+1)}{x+1} dx$

2. Evaluate

(a)
$$\int_{2}^{3} \frac{1}{x(x^{2}-1)} dx$$
 b) $\int_{0}^{1} x (1-x)^{\frac{1}{2}} dx$ (c) $\int_{0}^{1} x e^{-3x} dx$

b)
$$\int_0^1 x (1-x)^{\frac{1}{2}} dx$$

(c)
$$\int_{0}^{1} x e^{-3x} dx$$

(d)
$$\int_{0}^{1} x \sqrt{1+x} \ dx$$

(d)
$$\int_0^1 x \sqrt{1+x} \, dx$$
 (e) $\int_1^x (2x+1) \ln x \, dx$ (f) $\int_0^3 \frac{x}{1+x^2} \, dx$

(f)
$$\int_{0}^{3} \frac{x}{1+x^{2}} dx$$

(g)
$$\int_{1}^{4} (\frac{3}{x} - \sqrt{x})^2 dx$$

(g)
$$\int_{1}^{4} (\frac{3}{x} - \sqrt{x})^{2} dx$$
 (h) $\int_{0}^{1} \frac{1 - 4x}{3 + x - 2x^{2}} dx$

3. By using the substitution $u^2 = 2x + 1$, evaluate $\int_0^4 \frac{x}{\sqrt{2x+1}} dx$

4. By means of a trigonometrical substitution, prove that

$$\int_0^1 \frac{2x+1}{\sqrt{(4-x^2)}} dx = 4 - 2\sqrt{3} + \frac{1}{6} \pi.$$

5. Show that $\frac{d}{dx} \left(\frac{x}{1+5x} \right) = \frac{1}{(1+5x)^2}$. Hence, evaluate $\int_{1}^{3} \left(\frac{4}{1+5x} \right)^2 dx$.

6. Find $\frac{d}{dx}(x \cos x)$. Hence, evaluate

(a)
$$\int_{0}^{\pi} \cos x \, dx - \int_{0}^{\pi} x \sin x \, dx$$
 (b) $\int_{2}^{\pi} x \sin x \, dx$

(b)
$$\int_{2}^{\pi} x \sin x \, \mathrm{d}x.$$

7. If a > 1 and $\int_{1}^{a} \frac{x^4 - 1}{x^3} dx = \frac{9}{8}$, find a.

8. Express $\frac{x-2}{2x^2-x-3}$ in partial fractions and hence evaluate $\int_{2}^{3} \frac{x-2}{2x^2-x-3} dx$.

9. Evaluate the following integrals.

(a)
$$\int_0^1 \frac{8}{3+4x} dx$$

(a)
$$\int_0^1 \frac{8}{3+4x} dx$$
 (b) $\int_0^1 \frac{8}{\sqrt{(3+4x)}} dx$ (c) $\int_0^1 \frac{8x}{3+4x} dx$

(c)
$$\int_{0}^{1} \frac{8x}{3+4x} dx$$

10. (a) Show that $\int_{1}^{2} \frac{(x-1)(5x+2)}{(2x-1)(x^2+2)} dx = \frac{1}{2} \ln \frac{8}{3}.$

(b) By using the substitution $x = \frac{1}{2}(1 + \sin \theta)$, show that $\int_{\frac{1}{4}}^{\frac{3}{4}} \frac{x}{\sqrt{x-x^2}} dx = \frac{1}{2} \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} (1 + \sin \theta) d\theta$.

Hence, evaluate the integral.

11. (a) Show that $\int_{0}^{1} x^{2} e^{x} dx = e - 2$.

(b) Prove that
$$\int_0^{\frac{\pi}{2}} x \cos x \, dx = \frac{\pi}{2} - 1.$$

12. Express $\frac{1}{1-x^2}$ in partial fractions. Hence, show that, if -1 < x < 1,

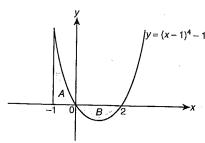
 $\int \frac{1}{1-x^2} dx = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) + c, \text{ where } c \text{ is the constant of integration}$

By integrating by parts, show tha

$$\int \frac{1}{1 - x^2} dx = \frac{x}{1 - x^2} - \int \frac{2x^2}{(1 - x^2)^2} dx.$$

Deduce the value of $\int_0^{\frac{1}{2}} \frac{x^2}{(1-x^2)^2} dx$ correct to three significant figures.

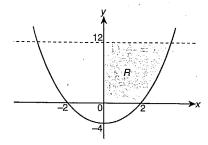
13. The graph of $y = (x - 1)^4 - 1$ is as shown below.



Find the total area of the shaded region A and B.

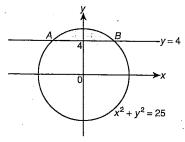
- 14. Sketch the graphs of the curves $y = (x 2)^2 + 1$ and $y = 6 (x 3)^2$. Find the coordinates of their points of intersection. Show that the area enclosed by the two arcs between their points of intersection is 9.
- 15. Find the area of the region in the first quadrant bounded by the curve $y = x^2 + 4$, the line y = 8 and the y-axis.

 This region is rotated through 360° about the y-axis. Find the volume of revolution formed.
- 16. The graph shows the curve $y = x^2 4$. The region R is formed by the line y = 12, the x-axis, the y-axis and the curve $y = x^2 4$ for positive values of x.



The inside of a vase is formed by rotating region R through 360° about the y-axis. Each unit of x and y represents 2 cm.

- (a) Write down an expression for the volume of revolution of region R about the y-axis.
- (b) Find the capacity of the vase in litres
- (c) Show that the vase is filled to $\frac{5}{6}$ of its internal height it is three-quarters full.
- 17. A mathematical model for a large garden pot is obtained by rotating through 360° about the y-axis the part of the curve $y = 0.1x^2$ which is between x = 10 and x = 25 and then adding a flat base. Units are in centimetres.
 - (a) Sketch the curve and shade the cross-section of the pot, indicating which line will form its base.
 - (b) Garden compost is sold in litres. Find the number of litres required to fill the pot to a depth of 45 cm. (Ignore the thickness of the pot).
- 18. (a) Find the coordinates of A and B, the points of intersection of the circle $x^2 + y^2 = 25$ and the line y = 4.

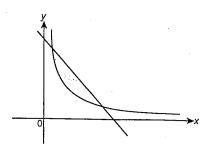


(b) A napkin ring is formed by rotating the shaded area through 360° about the x-axis. Find the volume of the napkin ring.

416

19. The region bounded by the lines x = 0, x = 1, y = 0 and the curve $y = \frac{1}{2 - x}$ is denoted by R. Calculate the area of R and the volume of revolution formed when R is rotated through 360° about the x-axis.

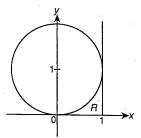
20.



The diagram shows a sketch of part of the curve xy = 3 and part of the line y = 4 - x. Use integration to find the area of the shaded region.

21. The equation $x^2 + y^2 = 1$ represents a circle with centre 0, the origin and radius 1 unit. By considering an appropriate region of the circle, show that,

$$\int_0^1 \sqrt{1-x^2} \, \mathrm{d}x = \frac{\pi}{4} \, .$$



The diagram shows a circle with equation $x^2 + (y - 1)^2 = 1$. The region R is bounded by the circle, the x-axis and the line x = 1. Show that the volume of the solid formed when R is rotated through 360° about the x-axis is given by

$$\pi \int_{0}^{1} (2-x^2-2\sqrt{1-x^2}) dx.$$

Hence, find this volume, giving your answer in terms of π .

- 22. Sketch the curve $y = 1 + 2e^{-x}$, showing clearly the behaviour of the curve as $x \to +\infty$. Find the area of the finite region enclosed by the curve and the lines x = 0, x = 1 and y = 1. Find the volume formed when this region is rotated completely about the line y = 1.
- 23. (a) Evaluate

(i)
$$\int_0^1 \frac{1+x}{1+2x} \, \mathrm{d}x$$

(ii)
$$\pi \int_0^{\frac{\pi}{3}} \sin x \cos^2 x \, dx$$

- (b) Sketch the arc of the curve $y = 2x x^2$ for which y is positive. Find the area of the region which lies between this arc and the x-axis. If this region is rotated completely about the x-axis, find the volume of the solid of revolution generated.
- 24. Obtain an approximate value of $\int_0^4 \frac{1}{1+\sqrt{x}} dx$ by using the trapezium rule with 5 ordinates, giving your answer correct to three significant figures.
- 25. Use the trapezium rule with ordinates at $\frac{\pi}{6}$, $\frac{\pi}{4}$, $\frac{\pi}{3}$, $\frac{5\pi}{12}$ and $\frac{\pi}{2}$ to estimate the value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{\sin \theta} \ d\theta.$
- 26. (a) Given that $I = \int_{-1}^{1} \frac{1}{1 + e^{-x}} dx$, show that the estimate of I obtained by using the trapezium rule with 3 ordinates is 1.
 - (b) By means of the substitution $u = e^x$, show that the estimate obtained in (i) is correct.

- 27. Given that f(x) = 2x³ 7x² + x + k and (x 2) is a factor of f(x), find the value of k and factorise f(x) completely.
 Sketch the curve y = f(x). (You are not required to find the coordinates of the stationary points)
 Use the trapezium rule with 4 ordinates to find an approximation to ∫² f(x) dx.
- 28. (a) If $I = \int_0^1 (x^2 + 1)^{-\frac{3}{2}} dx$, use the trapezium rule with 3 ordinates to estimate the value of I, giving your answer correct to two significant figures.
 - (b) By using the trapezium rule with the same ordinates as part (a), estimate the volume of solid formed to when the region bounded by the curve $y = (x^2 + 1)^{-\frac{3}{2}}$, the axes and the line x = 1 is rotated completely about the x-axis, giving your answer correct to two significant figures.

Revision Exercise

1. (a)
$$\frac{1}{2} \ln |2x - a| + c$$

1. (a)
$$\frac{1}{2} \ln |2x - a| + c$$
 (b) $\frac{1}{3} \ln |3x^2 + 9x - 1| + c$

(e)
$$-\sqrt{4-x^2}$$

(f)
$$-\frac{1}{3}e^{-x^3}$$

(g)
$$\ln \frac{x}{\sqrt{(2x+1)}}$$

(a)
$$\frac{1}{2} \ln |2x - 3| + c$$
 (b) $\frac{1}{3} \ln |3x^2 + 9x - 1| + c$ (c) $e^x - 2e^{-2x} + c$ (d) $\frac{(2x - 1)^2(x + 1)}{3}$ (e) $-\sqrt{4 - x^2}$ (f) $-\frac{1}{3}e^{-x^3}$ (g) $\ln \frac{x}{\sqrt{(2x + 1)}}$ (h) $x^2 - x + \ln |x + 1| + c$

2. (a)
$$\frac{1}{2} \ln \frac{32}{27}$$

(b)
$$\frac{4}{15}$$

(c)
$$\frac{1}{9} (1 - 4e^{-3})$$
 (d) $\frac{4}{15} (1 + \sqrt{2})$
(e) $\frac{1}{2} (e^2 + 3)$ (f) $\frac{1}{2} \ln 10$

(d)
$$\frac{4}{15}$$
 (1 + $\sqrt{2}$)

(e)
$$\frac{1}{2}$$
 (e² + 3

(f)
$$\frac{1}{2} \ln 10$$

(g)
$$2\frac{1}{4}$$

(h)
$$\ln \frac{2}{3}$$

3.
$$\frac{10}{3}$$

3.
$$\frac{10}{3}$$
 5. $\frac{1}{3}$

8.
$$\frac{3}{5(x+1)} - \frac{1}{5(2x-3)}$$
, $\frac{3}{5} \ln 4 - \frac{7}{10} \ln 3$

9. (a)
$$2 \ln \frac{7}{3}$$

(b)
$$4(\sqrt{7}-\sqrt{3})$$

(c)
$$2 - \frac{3}{2} \ln \frac{7}{3}$$

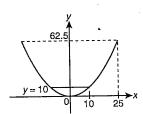
10. (b)
$$\frac{\pi}{6}$$

15.
$$\frac{16}{3}$$
, 8π

16. (a)
$$V = \pi \int_0^{12} X^2 dy$$
 (c) $\int_0^{10} \pi (y + 4) dy = 90\pi$

$$=\frac{3}{4}(120\pi)$$

17. (a)



(b) 45 - 9I

(a)
$$A(-3, 4)$$
, $B(3, 4)$ (b) 36π

19. In 2,
$$\frac{1}{2}\pi$$

21.
$$\frac{\pi}{6}$$
 (10 - 3 π)

22.
$$2-\frac{2}{e}$$
; $2\pi(1-\frac{1}{e^2})$

23. (a) (i)
$$\frac{1}{2} + \frac{1}{4} \ln 3$$

(a) (i)
$$\frac{1}{2} + \frac{1}{4}$$
 Ir

(b)
$$\frac{4}{3}$$
, $\frac{16}{15}\pi$

27.
$$k = 10$$
, $f(x) = (x - 2)(2x - 5)(x + 1)$; 18

(ii) $\frac{1}{3}$

45