

Exercise 8.1-

- 1. Differentiate $\ln (x + \sqrt{x^2 + 1})$ with respect to x. Hence, find $\int \frac{1}{\sqrt{x^2 + 1}} dx$.
- 2. Given that $y = (x+3)\sqrt{2x-3}$, show that $\frac{dy}{dx} = \frac{3x}{\sqrt{2x-3}}$. Hence, find $\int \frac{x}{\sqrt{2x-3}} dx$.
- 3. Find $\frac{d}{dx}(x \cos x)$. Hence, evaluate $\int (\cos x x \sin x) dx$.
- 4. Differentiate $\frac{x^2}{2x-1}$ with respect to x and hence evaluate $\int \frac{x(x-1)}{(2x-1)^2} dx$.
- 5. Given that $y = \ln \cos x$, find $\frac{dy}{dx}$. Hence, find $\int \tan x \, dx$.

Exercise 8.1

1.
$$\frac{1}{\sqrt{x^2+1}}$$
, $\ln(x+\sqrt{x^2+1})+c$

2.
$$3(x+3)\sqrt{2x-3}+c$$

3.
$$\cos x - x \sin x$$
; $x \cos x + c$

4.
$$\frac{2x(x-1)}{(2x-1)^2}$$
; $\frac{1}{2}(\frac{x^2}{2x-1}) + \alpha$

$$5 - \tan x - \ln |\cos x| + c$$