Exercise 8.1- - 1. Differentiate $\ln (x + \sqrt{x^2 + 1})$ with respect to x. Hence, find $\int \frac{1}{\sqrt{x^2 + 1}} dx$. - 2. Given that $y = (x+3)\sqrt{2x-3}$, show that $\frac{dy}{dx} = \frac{3x}{\sqrt{2x-3}}$. Hence, find $\int \frac{x}{\sqrt{2x-3}} dx$. - 3. Find $\frac{d}{dx}(x \cos x)$. Hence, evaluate $\int (\cos x x \sin x) dx$. - 4. Differentiate $\frac{x^2}{2x-1}$ with respect to x and hence evaluate $\int \frac{x(x-1)}{(2x-1)^2} dx$. - 5. Given that $y = \ln \cos x$, find $\frac{dy}{dx}$. Hence, find $\int \tan x \, dx$. ## Exercise 8.1 1. $$\frac{1}{\sqrt{x^2+1}}$$, $\ln(x+\sqrt{x^2+1})+c$ **2.** $$3(x+3)\sqrt{2x-3}+c$$ 3. $$\cos x - x \sin x$$; $x \cos x + c$ **4.** $$\frac{2x(x-1)}{(2x-1)^2}$$; $\frac{1}{2}(\frac{x^2}{2x-1}) + \alpha$ $$5 - \tan x - \ln |\cos x| + c$$