Exercise 8.10

- (a) y = 2x, the x-axis and the lines x = 1 and x = 3
- (b) $y = x^2 + 1$, the x-axis and the lines x = -1 and x = 1
- (c) $y = \sqrt{x}$, the x-axis and the line x = 4
- 2. Find the volume of the solid of revolution formed when the region bounded by the curves and the given lines is rotated completely about the y-axis.
 - (a) y = 3x, the y-axis and the lines y = 3 and y = 6
 - (b) y = x 3, the y-axis, the x-axis and the line y = 6
 - (c) $y = x^2 2$, the y-axis and the line y = 4.
- 3. The region bounded by the two curves is rotated completely about the x-axis. Find the volume of the solid formed.
 - (a) y = x(6 x) and y = 3x
 - (b) $y^2 = 4x$ and y = 2x
 - (c) $y^2 = 4x$ and $x^2 = 4y$.
- 4. The region R in the first quadrant is bounded by the y-axis, the x-axis, the line x = 3 and the curve $y_1^2 = 4 x$. Calculate the volume formed when R is rotated about the y-axis through one revolution.
- 5. A hemispherical bowl is formed by rotating the bottom half of the circle $x^2 + y^2 = 100$ about the y-axis.
 - (a) Find the volume of the bowl.
 - (b) The bowl is filled with water to a depth of 8 cm. Find the volume of water in the bowl.
- 6. Sketch on the same axes, show that part of the curve $y = 16 x^2$ and the line y = 6x lies in the first quadrant. Shade the area. The region bounded by the curve and the line is rotated completely about the x-axis. Find the volume generated, leaving your answer as a multiple of π .
- 7. The area bounded by the curve $y = \tan x$, the x-axis and the ordinate $x = \frac{\pi}{3}$ is rotated about the x-axis. Calculate the volume of the solid formed.
- 8. Calculate the volume generated when the finite region enclosed by the curve $y = 1 + 2e^{-x}$ and the lines x = 0, x = 1 and y = 1 is revolved completely about the x-axis.
- 9. Sketch the curve $y = e^x$ and $y = e^{-x}$ for $-2 \le x \le 2$. The interior of a wine glass is formed by rotating the curve $y = e^x$ from x = 0 to x = 2 about the y-axis. If the units are in centimetres, find, correct to 2 significant figures, the volume of liquid that the glass contains when full.
- 10. Sketch the curve whose equation is

$$y=1-\frac{1}{x+2},$$

indicating any asymptotes which the curve possesses.

The region bounded by the curve, the x-axis and the ordinates x = 0 and x = 2 is denoted by R.

Find the volume swept out when R is rotated about the x-axis through an angle of 2π .

11. The diagram shows the region R in the first quadrant bounded by the curves $y = \frac{1}{4} (4 - x^2)$, $y = \frac{1}{2} (4 - x^2)$ and the y-axis. Calculate the volume of the solid formed when R is rotated through an angle of 2π about the y-axis.

12. A chord of the circle $x^2 + y^2 = r^2$ is parallel to the x-axis and of the length 2l. The minor segment cut off by this chord is rotated about the x-axis to form a solid of revolution. Prove that its volume is $\frac{4}{3} \pi l^3$.

Exercise 8.10

- 1. (a) $\frac{104}{3} \pi \text{ units}^3$ (c) $8\pi \text{ units}^3$
- (b) $\frac{56}{3}$ π units³
- 2. (a) $7\pi \text{ units}^3$ (c) $18\pi \text{ units}^3$
- (b) 234π units³
- (b) $\frac{2}{3}\pi$ units³
- 3. (a) $\frac{243}{5} \pi \text{ units}^3$ (c) $\frac{96}{5} \pi \text{ units}^3$
- **4.** $\frac{188}{15} \pi \text{ units}^3$ **5.** (a) $\frac{2000}{3} \pi \text{ units}^3$
- (b) $\frac{1408}{3} \pi \text{ units}^3$

- 7. 2.15 units³
 8. $\pi(6-4e^{-1}-2e^{-2})$ 9. 40
- 10. $\pi(\frac{9}{4} 2 \ln 2)$
- **11.** 2π