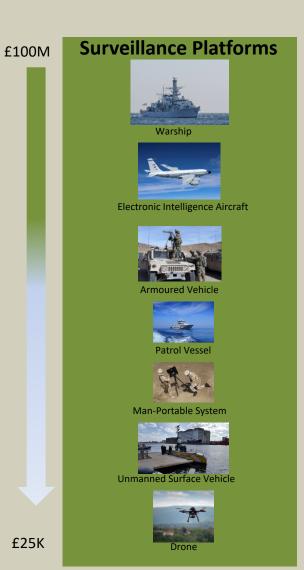
MicroESM – Developing the World's Smallest Fully Functional Radar ESM

Presented by: Jon Roe, CEO, ESROE LIMITED

Monitoring radar signals

- The detection and identification of radar signals has traditionally been the domain of military radar ESM equipment
- Military ESM equipment is typically very expensive and often very bulky
- This limits the availability of ESM to the warfighter



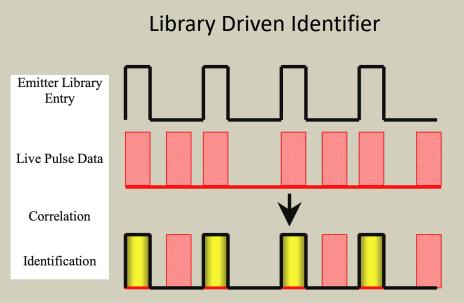
Radar ESM – Capability Gap

£25K

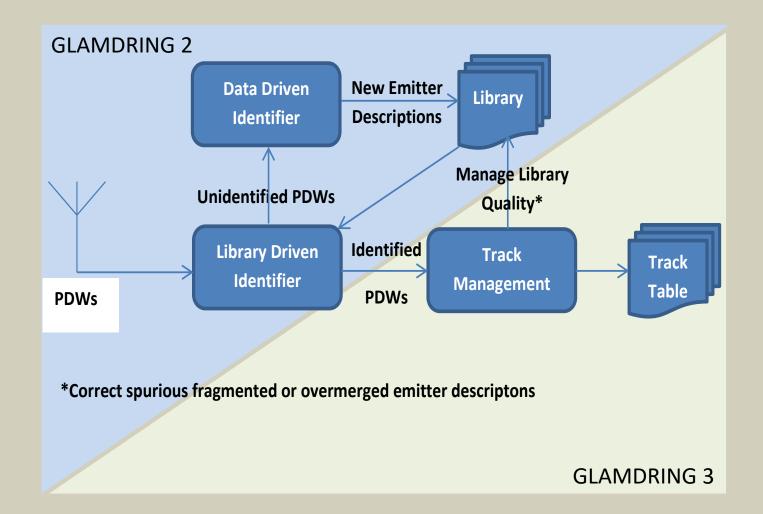
micro ESM

micro ESM

- Size: < 6 Litre
- Weight: < 2 Kilo
- Power: < 50 Watt
- Automatic
- Networkable
- Low cost


Development of a micro ESM

- Development of an ESM system that fits the requirements for a 'micro ESM' requires that suitable size, weight and power (SWAP) solutions are found for the following:
 - Antennas
 - Receivers
 - Processing software
 - Processing platform
 - System enclosure
 - Display
- A COTS (Commercial off the shelf) has to be followed to keep costs down.


ESM processing software

- Unique GLAMDRING software
- Uses time of arrival correlation
- Not dependent on RF, pulse width or DoA measurement
- Deinterleaving and identification is a one pass process
- ESM library consists of pulse sequence descriptions of radar waveforms

GLAMDRING

Computing platforms for GLAMDRING

- Key for a micro ESM is a small, low power computing platform for the ESM processing
- The GLAMDRING software is very efficient and can be run on small processor cards such as Raspberry Pi, or small computers such as a smartphone or a tablet

A receiver for micro ESM

- The micro ESM system design requires a small low power receiver module
- ESROE have worked with Leonardo UK to develop the MRx receiver
- The MRx receiver weighs only 518g and consumes less than 20W of power
- The MRx receiver provides 4 detection and measurement channels with an RF input and a digital PDW output over Ethernet or USB

Leonardo MRx receiver

Antennas

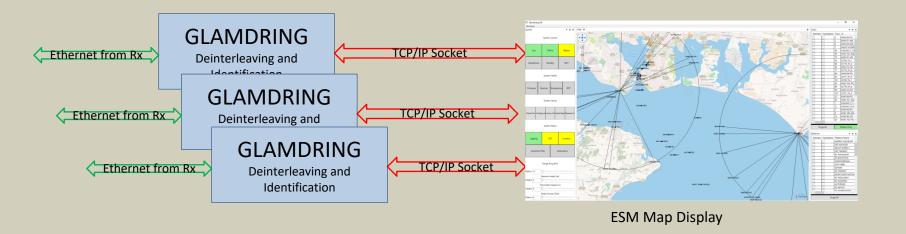
- To limit the size of the ESM system small antennas are required
- A spiral antenna gives the wide bandwidth required and can be designed to be small
- ESROE has worked with Cobham Antennas to reduce the weight of an already small off-theshelf antenna
- The antennas each weigh as little as 64g
- Frequency coverage is 2 18 GHz
- Any lower frequency increases the size of the antenna too much for a micro ESM design

System configuration

- Aim was to create one design suitable for widest range of applications
- Key questions:
 - Separate Antenna and receiver modules?
 - Integrated processing
 - Power sources

Rugged enclosure

- Although design was COTS, ruggedness of system has to be credible for military use
- Full range of environmental requirements to be met, without increasing cost, size or weight too much
- Weatherproof, shockproof, vibration resistent, ability to operate in a full range of climactic conditions and very low electromagnetic emissions



ESM display

- A ruggedised Panasonic ToughPad was chosen as the initial computing platform
- MS Windows 10 was chosen as the operating system
- A map based display was chosen
- A map based Graphical User Interface (GUI) was developed from scratch incorporating a commercial mapping tool
- The GUI was designed to be portable to other environments, particularly Android

Software architecture

ESROE's MicroESM 1t

MicroESM 1t antenna/receiver unit

MicroESM 1t – full ESM in a case

MicroESM 1t ready to go

MicroESM 1t tablet display

MicroESM 1t in a simple vehicle mount configuration

ESROE's MicroESM 1t - Specification

Frequency coverage	2 – 18 GHz	Weight (Antenna/Rx unit)	< 1.5 Kg
Frequency resolution	3.5 MHz	Power	< 20 W
Azimuth coverage	360°	Operating voltage range	10 – 20 V
Bearing measurement	10° rms	Operational battery life	Up to 12 hours (BB2590 battery)
Sensitivity	-55 bBm	Environmental Certification	IP 68 DEF STAN 00-35
Dynamic range	40 dB	Pulse logging	3 hours

