

Quantum Technologies – Hype or Game Changer?

Dr Anthony Szabo Quantum Technologies Theme Leader Defence Science & Technology Group

What is Quantum?

- Dominant physics at very small scales...atomic, sub-atomic & nuclear scales
 - $10^{-10} 10^{-15}$ metres
- Arose from theoretical attempts to explain experiments on blackbody radiation & the 'ultraviolet catastrophe'
 - Thermal electromagnetic radiation emitted by bodies in thermodynamic equilibrium with their environment
 - Classical theory predicts significantly more UV from a black body than is observed
 - UV emissions tend to ∞ ⇒ matter should radiate away all of its energy!
 - Required the development a new branch of physics to resolve issue...quantum physics!
- Soon became apparent that nature behaved very differently on atomic & sub-atomic scales!

Image Credit: J

Image Credit: U

Quantization

- Energy is not continuous, but comes in small packets or 'quanta'
- For example, consider the photoelectric effect
 - The release of electrons when light hits a material
 - Classically, this effect would be attributed to transfer of energy from the light to the electrons in the material...more intense light, more energetic electrons
 - Instead, experiments show that NO electrons are released until the energy of the light reaches a threshold!
 - Einstein proposed that this is because light consists of discrete wave packets or 'quanta', & that a photon with energy above a threshold was required to dislodge the electron
- BLUF: Explains atomic energy levels & the periodic table

Image Credit: V

Image Credit: F

Heisenberg's Uncertainty Principal

- Macroscopically, we expect to simultaneously measure all properties of matter with arbitrary precision, e.g. position & velocity of a ball
- However, this is NOT the case on quantum scales
 - For example, cannot measure BOTH the position & momentum (velocity) of a particle to arbitrary accuracy at the same time
 - Heisenberg uncertainty relation

 $\Delta x \Delta p \ge \frac{h}{4\pi}$, where $h = 6.62606957 \times 10^{-34} \text{ m}^2 \text{ kg s}^{-1}$ is Planck's const.

 Was thought to be a property of the observation disturbing the quantum systems, but is now clear it arises from the matter wave nature of all quantum objects

Image Credit: K

- If you improve the accuracy of the position measurement, then you can't measure the velocity of the
 particle with the same accuracy
- Comes in a variety of forms involving complementary properties of particles, e.g. energy & time $\Delta E\Delta t \ge \frac{h}{4\pi}$ etc.
- BLUF: Accounts for quantum tunnelling of subatomic particles (electrons) through a potential barrier, that is fundamental for semiconductor devices like flash memory

Wave-Particle Duality

- Macroscopically, our experience tells us that matter does not behave like a wave & waves need a medium in which to occur...
- Wave-particle duality
 - Sub-atomic particles sometimes behave like waves & photons sometimes behave like particles, i.e. neither 'particle' or 'wave' descriptions fully describe the behaviour of quantum objects
- Photoelectric Effect = light made up of 'particles' or quanta
- BUT light exhibits wave behaviour such as diffraction & interference
 - For example, double slit experiment with light
- However, you can also conduct the double slit experiment with Electrons...
 - Wavelength of matter or de Broglie wavelength, $\lambda = \frac{h}{p}$, where p is the momentum
 - Wavelength is very small for macroscopic objects, but has been observed for molecules containing 810 atoms⁺

⁺ Sandra Eibenberger *et al*, "Matter–wave interference of particles selected from a molecular library with masses exceeding 10 000 amu", Phys. Chem. Chem. Phys. (2013) **15**, 14696

Image Credit: O

Double slit experiment with light

Double slit experiment with Electrons

Image Credit: P

b = 200 electrons

c = 6000 electrons

d = 40,000 electrons

e = 140,000 electrons

Quantum Superposition

- Any quantum state can be expressed as the sum of two or more other distinct states
- Conversely, any two (or more) quantum states may be added together to form a valid quantum state
- For example, consider a quantum bit or 'qubit' which has an equal chance of outcomes 0 & 1 when measured
 - Until it is measured, the qubit is in a superposition of both states

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

where $|0\rangle$ & $|1\rangle$ are quantum state vector in Dirac notation that give the result 0 & 1 when measured

BLUF: a quantum computer with n qubits can be in a superposition of up to 2ⁿ different states at any one time (classical computer can only be in one state!)

Schrödinger's Cat

- Thought experiment to demonstrate how ridiculous the idea of quantum superposition really is...
 - Imagine...a box containing a cat & a radioactive source that triggers the release of a poisonous gas if it decays
 - Assume that during a particular time interval there is a 50% chance of the source decaying
 - The quantum state of the radioactive source may be written as

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|d\rangle + |u\rangle)$$

- where |d> & |u> are quantum state vector that result in the source being decayed or undecayed when measured
- This makes perfect sense in quantum physics, but what does it mean for the cat?
- In principle, until the box is opened, the cat is also in a quantum superposition as the release of the poison is linked to the radioactive source...so it is both dead & alive!

Image Credit: N

Quantum Entanglement

- Physical phenomenon that occurs when pairs of particles or photons are generated such that their quantum states cannot be described independently of each other
 - Even when particles or photons are separated by large distances
 - Measurement of physical properties, such as position, momentum, spin and polarisation, are perfectly correlated for entangled particles
 - For example, if particles are produced with a total spin of zero, then if one particles is measured to be spin up, the other will be spin down
 - Implies that the measurement of one particle impacts the whole entangled system ⇒ properties of quantum particles are non-local
 - AND it occurs instantaneous, even if separation of particles is very large!
- BLUF: used in quantum cryptography to detect the presence of an interceptor & likely to be important for quantum computing

Image Credit: H

Image Credit: U

Second Quantum Revolution

- Heralded by Jonathon Dowling & Gerard Milburn in 2002⁺
- Actively using the new rules of quantum science to manipulate the physical world & develop new technologies
 - Create new artificial atoms to have electronic & optical properties of our choosing e.g. quantum dots etc.
 - Create new states of entangled or quantum coherent matter & energy with novel properties
- Moving from the science of quantum mechanics, to quantum technologies & quantum engineering

Image Credit: E

Image Credit: E

⁺ Jonathon P Dowling & Gerard Milburn, "Quantum Technology: The Second Quantum Revolution", Phil. Trans. R. Soc. Lon. (2003) **361**, 1655-1674

Quantum Technology

- Imperatives
 - Ongoing miniaturisation of technology will ultimately lead to devices on the nanometre scale...design must be based on quantum principles
 - Semiconductor process at ~5 nm...lines just a few atoms wide
 - Quantum technologies also promise vastly improved performance compared to classical technologies
 - Small sensors of unprecedented sensitivity
 - Magnetometers, gravimeters, accelerometers...
 - Small clocks of unprecedented accuracy
 - Communications with unprecedented security...in principle!
 - Computers of unprecedented power...for some problems!

Quantum Technology – Research Investment

Quantum Technologies – Strategic Investment

- UK National Quantum Technologies Program
 - £270M over 5 years from 2015...anticipate a £1B quantum industry over time
- European Commission's Quantum Technologies Flagship
 - €1B over 10 years from 2018, focus on quantum sensing, communication, simulation & computing
- US National Quantum Initiative Act
 - USD1.2B over 5 years from 2018, focus appears to be on quantum information science & technology
- China's Quantum Science Program
 - Recent estimates put the value of the program as high as \$5-10B, although this probably includes elements of the space segment of the 'quantum internet'

Image Credit: N

Image Credit: P

Quantum Technologies Hype Cycle

Hype Cycle for Emerging Technologies, 2018

Quantum Technologies Timeline (*c.* **2015)**

Communication - 5 years Core technology of quantum repeaters Secure point-to-point quantum links	2. Simulator of motion of electrons in materials B New algorithms for quantum simulators and networks
5 – 10 years C Quantum networks between distant cities	C Development and design of new complex materials
3. Sensors	4. Computers
 A Quantum sensors for niche applications (incl. gravity and magnetic sensors for health care, geosurvey and security) B More precise atomic clocks for synchronisation of future smart networks, incl. energy grids 	 A Operation of a logical qubit protected by error correction or topologically B New algorithms for quantum computers C Small quantum processor executing technologically relevant algorithms
C Quantum sensors for larger volume applications including automotive construction	D Solving chemistry and materials science problems with special purpose quantum

Image Credit: R

Australian Defence Innovation System

Later stage capability development

Next Generation Technologies Fund priorities

A NATIONAL PARTNERING PROGRAM

Quantum Technologies Theme

- Currently, a \$6M project over three years
 - DST currently working on programing the rest of the NGT program
- Strategic Approach
 - Initially, focus on
 - Quantum Sensing, Navigation & Timing
 - Quantum Communications
- Quantum Computing
 - Significant public & private investments globally in several quantum computing technologies
 - Hard to pick a winning technology...at least 5 qubit technologies being researched
 - Any Defence investment would be dwarfed by global investment!
 - Defence to develop strategic approach to Quantum Computing & focus on potential applications of Quantum Computers
 - Architecture, sub-systems, operating system, algorithms etc.

Image Credit: A

Image Credit: B

Quantum Research Network

- First Call in 2018
 - 80 proposals received & assessed by a panel including UK SME
 - 11 proposals recommended for funding
 - 10 from universities, 1 from industry
 - All contracts now in place & progressing
- Subsequent Calls?
 - Some worthy proposals did not receive funding!
 - Recent business intelligence activities indicate that there remains significant untapped Defence Quantum Technologies potential in Australia
 - DST plans for at least one further call, but is still to determine the focus areas...

Image Credit: E

Image Credit: F

AUSMURI

- MURI = Multidisciplinary University Research Initiative
 - Australia now partnering with the US on joint projects
- Successful 2017 Round Project in Quantum
 - Quantum control based on real-time environmental analysis by spectator qubits
 - aka "Noise cancelling headphones for quantum computers"
 - <u>https://www.youtube.com/watch?v=dxQCmm5OMZQ</u>
 - Participants
 - Duke University, Louisiana State University, UC Berkeley, MIT, Johns Hopkins University Applied Physics Laboratory, University of Oregon
 - Griffith University (Paz Silva & Wiseman), University of Technology Sydney (Ferrie), University of New South Wales (Morello)

Strategic Engagement – ARC Centres of Excellence

- Quantum Technologies Theme engaging with
 - Centre for Engineered Quantum Systems (EQuS)
 - Centre for Quantum Computing & Communications Technology (CQC2T)
- EQuS Projects
 - 2018 A theoretical study into the role of dynamical decoupling for correcting systematic errors that degrade the performance of an atomic beam clock (PI: Professor Tom Stace)
 - 2019 A demonstration of the feasibility of performing frequency conversion of light pulses from 795nm to 1530nm with application to quantum communication & memories (PI: Dr Till Weinhold)
 - 2019 Quantum computing for Defence applications of quantum chemistry (PI: Dr Cornelius Hempel)

AUS-UK Collaborative PhD Program

- AUS & UK seeking to address the workforce pipeline by sponsoring a collaborative PhD Program
 - Aiming for 6 scholarships sponsored by UK, 6 scholarships sponsored by AUS

- Aim to align PhD topics with national programs, e.g. Quantum Technologies Theme
- Plan joint Summer Schools bringing together all of the PhD candidates
 - Address topics such as Introduction to the Military, Systems Engineering etc.
- Progress
 - UK: Eighteen PhD projects selected, however process delays have resulted in not all PhD candidates being in place by October 2019
 - AUS: Eight PhD Projects selected, contracts being put in place for candidature to start in Q1 2020

Summary

- We are in the midst of the Second Quantum Revolution
- Quantum Technologies will outperform classical technologies in niche areas
- Significant strategic investments in Quantum Technologies globally
- Australian Department of Defence is investing in niche Quantum Technologies via the Next Generation Technologies Fund
 - Focussing on applications in sensing, timing, communications etc.

Quantum Technologies will deliver game changing capabilities, but there's a lot of hype!

QUESTIONS?

Image Credits

- A. https://www.bmbf.de/de/quantentechnologien-7012.html
- B. http://marconisociety.org/quantum-communications/
- C. https://www.dailygrail.com/2017/03/mental-illness-treatment-may-offer-evidence-for-quantum-effects-in-the-brain/
- D. https://www.parliament.uk/business/committees/committees-a-z/commons-select/science-and-technology-committee/news-parliament-2017/quantum-technologies-inquiry-launch-17-19/
- E. https://moderndiplomacy.eu/2018/10/31/quantum-technologies-flagship-kicks-off-with-first-20-projects/
- F. https://phys.org/news/2014-12-quantum-physics-complicated.html
- G. https://www.chargrilled.com.au/t-shirts/Schrodinger%27s-Cat-Box-t-shirt.m
- H. https://www.express.co.uk/news/science/614042/Quantum-entanglement-experiment-Germany-Nature
- I. https://warontherocks.com/2017/11/leap-quantum-technology-primer-national-security-professionals/
- J. https://en.wikipedia.org/wiki/Max_Planck/
- K. By Bundesarchiv, Bild 183-R57262 / Unknown / CC-BY-SA 3.0, CC BY-SA 3.0 de, https://commons.wikimedia.org/w/index.php?curid=5436254
- L. https://curiosity.com/topics/the-double-slit-experiment-cracked-reality-wide-open-curiosity/
- M. Lookang many thanks to Fu-Kwun Hwang and author of Easy Java Simulation = Francisco Esquembre [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)]
- N. http://nobelprize.org/nobel_prizes/physics/laureates/1933/schrodinger-bio.html
- 0. http://www.physics.umd.edu/courses/Phys420/Spring2002/Parra_Spring2002/HTMPages/whoswho.htm
- P. By user:Belsazar Provided with kind permission of Dr. Tonomura, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=498735
- Q. http://nobelprize.org/nobel_prizes/physics/laureates/1933/dirac.html
- R. By Stigmatella aurantiaca with modification by Kid222r File:Mach Zehnder interferometer.svg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=74141621
- S. Barrett, B. et al. Proc.Int.Sch.Phys.Fermi 188 (2014) 493-555 arXiv:1311.7033
- T. By Darth Kule Own work, Public Domain, <u>https://commons.wikimedia.org/w/index.php?curid=10555337</u>
- U. https://rm.wikipedia.org/wiki/Albert Einstein
- V. http://www.gratissite.eu/20170504080520_niels-bohr-model-of-the-hydrogen-atom