

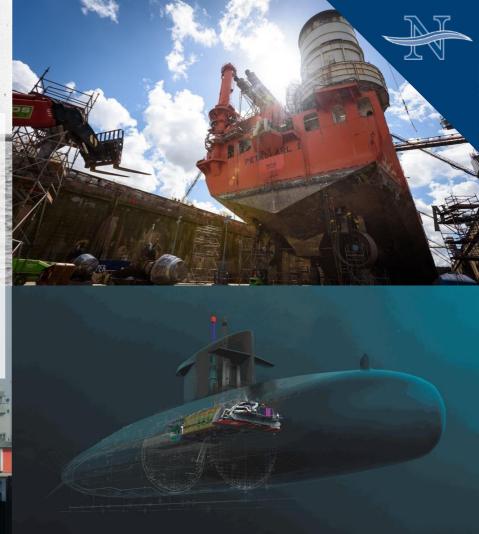
TOTAL BATTERY POWERED SUBMARINE DESIGN, A NEW WAY OF THINKING

Sven Los

Nevesbu

Naval Architects & Marine Engineers

NEVESBU

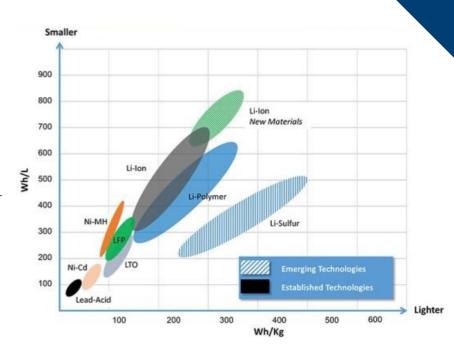


Name: Sven Los

Background: MSc Marine Technology at TU Delft

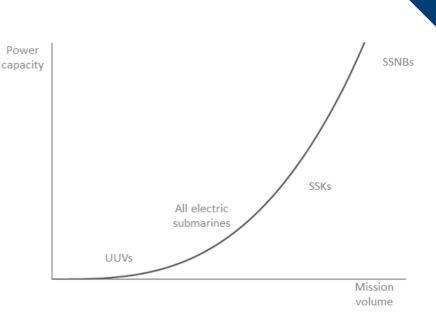
Function: Naval architect

CONTENT

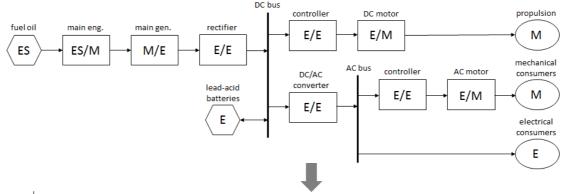

- ➤ Introduction
- Potential benefits of total battery powered submarines
- ➤ Identified design challenges
- > Feasibility study
- Market potentials
- Conclusion

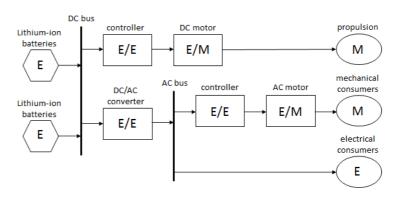
COMMERCIAL IN CONFIDENCE

INTRODUCTION


- ➤ Past decades; enormous developments in battery technology
- Research into battery technology still ongoing
- New battery technology has a high potential for the undersea defense industry

INTRODUCTION


- Improved battery technology led to a revolution in the civil electric vehicle industry and is upcoming in civil shipping industry
- ➤ Use of total battery powered vessels in the undersea defense industry limited to UUVs and small manned vehicles
- ➤ Improved battery technology is expected to make total battery powered submarines feasible


INTRODUCTION

Diesel electric:

Total battery powered:

egend	
S	Energy Source
	Electric Energy
Λ	Mechanical Energy
\supset	Source
\supset	Consumer
	Transformation

POTENTIAL BENEFITS OF TOTAL BATTERY POWERED SUBMARINES

Tactical advantages

- ➤ Air independent propulsion system
- ➤ Reduction in signature
 - Thermal
 - Acoustic
 - Visual
 - Radar cross section
- Safety characteristics
 - Lithium battery vs lead acid batteries
 - Less hot machine parts (no combustion engines), which will reduce the risks of fire
 - Less pressure hull penetrations

POTENTIAL BENEFITS OF TOTAL BATTERY POWERED SUBMARINES

Reduction of complexity

- Decrease in amount of systems
 - Decrease of design complexity
 - Reduction in maintenance
 - Reduced workload for submarine crew
 - > Improvement in availability and reliability
- Simplification of systems
- Potential for crew size reduction and automatization
 - Simplification of control propulsion plant
 - Simplification of control underwater systems
 - Reduction in required corrective and preventive maintenance

Overview achievable system reduction due to omission of DG-sets

Diesel engines

Generators

Lubrication oil system diesel engines

Fresh water cooling system diesel engines

Seawater cooling system diesel engines

Diesel engine start – stop system

Air intake system

Exhaust gas system

Fuel oil injection system

Fuel oil service and conditioning system

Fuel oil transfer and compensation system

IDENTIFIED DESIGN CHALLENGES

- Density lithium batteries
- ➤ Impact on platform design philosophies
- Safety aspects of battery integration
- ➤ Air quality control for prolonged submerged periods
- The loss of selfcharging capacity will make powerconsumption management a critical success factor

Research goal and approach

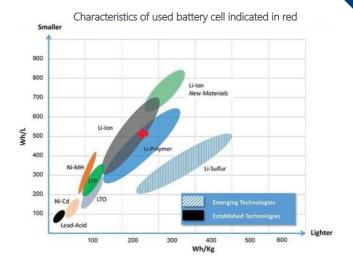
- Research goal;
 - Determining the feasibility of an entirely battery powered submarine design based on available technology
 - Determining the limiting design factors

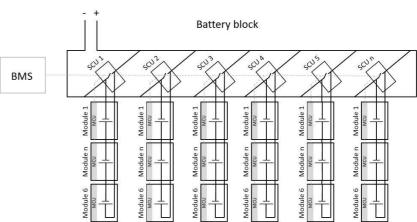
Approach;

- Re-designing an existing diesel-electric submarine design into a total battery powered submarine design
- The MORAY 1800 used as reference design
- Design volume and all design requirements (except required endurance and range) are kept constant
- The created total battery powered design is compared with reference design to determine the feasibility

Created concept design

Created concept design – main characteristics




Dimensions	Length Hull diameter	66.5 m 6.5 m
Displacement	Surfaced	1700 ton
	Submerged	1900 ton
Diving depth Combat	Max. operational Launching tubes weapons	300 m 6 20
Speed	Max for one hour	20 kn
Accommodations	Burst Crew & trainees	21.5 kn 34+4

Battery design

- ➤ Applied battery technology
 - ➤ NMC chemistry lithium batteries
 - Specific energy modules: 200 Wh/kg
 - ➤ Energy density modules: 314 Wh/l

- ➤ Applied battery topology
 - > Four battery blocks
 - Total amount of battery strings: 1476
 - Total installed battery capacity: 88.5 MWh

Equipment limit

Equipment limit

12

Concept survival aux

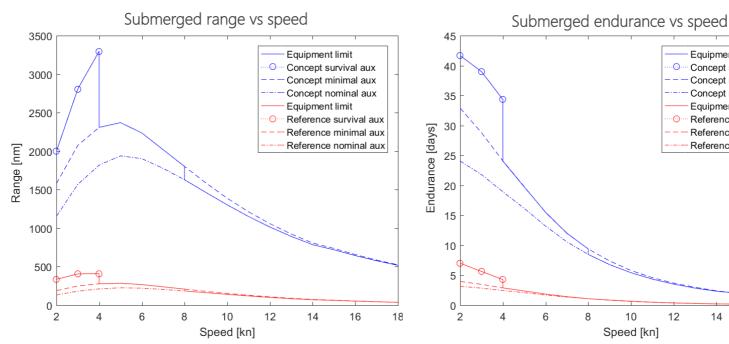
Concept minimal aux

Concept nominal aux

Reference survival aux

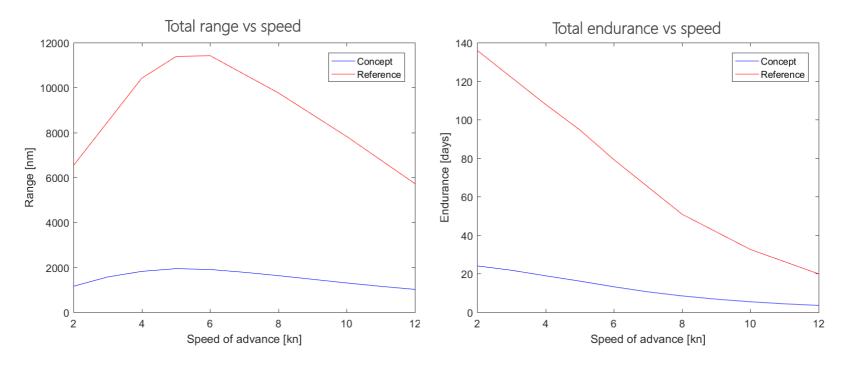
Reference minimal aux

Reference nominal aux

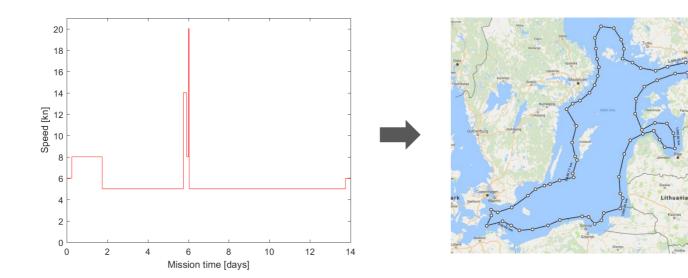

16

14

18

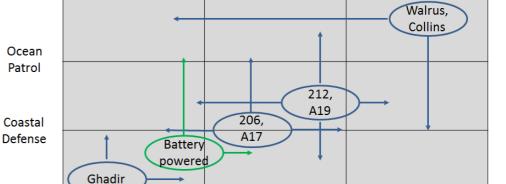

Operational capability study

Submerged range and endurance comparison between concept and reference design


Operational capability study

Total range and endurance comparison between concept and reference design

Mission capabilities


- ➤ Local to medium range mission feasible for total battery powered design
- Example of two week mission given below:

MARKET POTENTIALS

- Total battery powered design; most suitable for coastal defense missions
- Low design complexity, which leads to a less complex production and maintenance
- Improvement in availability and reliability
- Expected reduction in investment and lifecycle costs
- Battery technology is still improving; potential of total battery powered design will increase

Medium range ± 1500 Nm Ocean going ± 5000 Nm

CONCLUSION

Conclusion

- Total battery powered submarines can been seen as new players in the market of naval submarines
 - > High potential for small displacement submarines used for coastal defense missions
 - They will have advantage from a design, maintenance, costs and operational perspective
- The option of a total battery powered submarine should be kept in mind when the design/purchase process of new submarines is started

