

6 Degrees-of Freedom Towed Buoy Dynamic Assessment

Kristian Geleff - UDT, Glasgow, 2018

Marin

Land

Aviation

Nuclear

Introduction

6 Degrees-of Freedom Towed Buoy Dynamic Assessment

- Introduction of the system
- Purpose of developing this capability
- Challenges
- Simulation
- Key Performance Indicators
- Conclusion

Purpose

Provide confidence across a number of areas:

- Assess simulation performance against test data
 - Validation activities
- Assess performance impact of design changes
 - Developmental tool improve design & performance
- Assess performance across wide range of operating scenarios
 - Time and availability of platforms make this very challenging to achieve with testing
 - Define operating envelope interpolate between measured points of data
 - De-risking tool increase likelihood of full scale trials being successful

Challenges

Scale

- Underway towed systems are very large
 - Towed body to towing platform spans hundreds of meters
 - No test facilities large enough to accommodate full scale testing
 - Requires towing platform
 - Often actual platform due to lack of suitable research platforms
 - High risk going from the drawing board to full scale tests

Tank Testing

Hydrodynamic scaling

- Different for turbulent transition (Reynolds Number R_e) and wave making resistance (Froude Number F_r)
 - Not possible to scale for both simultaneously
 - Scale based on F_r and add leading edge trips to artificially trigger turbulent transition at lower Reynolds Numbers.

Challenges

Operating Environment

- Wind and waves by nature are chaotic and turbulent
 - · Repeatable experiments cannot be achieved
 - Sea states are characterised in statistical terms i.e. significant wave height, period...
 - Statistical methods of analysing performance becomes necessary

Challenges

Challenges

Simulation in the wave affected zone:

- Full 6 degree of freedom buoy dynamics required for complex shape
- Hydrodynamic coefficients required for all impingement angles
- Hydrodynamic scaling challenges

Top

Simulation

Key Performance Indicators

Monitor KPIs: Availability

- Antenna depth
- Antenna orientation

Results:

- Availability (%)
- Min, max, mean, standard deviation

Key Performance Indicators

Assessment of KPI across operating scenarios

- Identify operating scenarios where performance improvements required
- Quantify performance of design changes
- Performance prediction for end user

Note: Random data used to demonstrate visualisation

		Sea State b	Sea State b	Sea State b
Speed	Depth	Heading	Heading	Heading
(kts)	(m)	z z z z z	z z z z z	z z z z z
х	y y y y			
x	y y y y y			
х	y y y y y			

Conclusion

Challenges facing development of submarine towed buoy systems have been discussed

- Full scale testing is expensive and logistically difficult
- Scaling effects and highly coupled natured limits value of small scale/sub element testing
- Operating environment is chaotic and not easily replicated in a controlled test
- Statistical validation

Simulation is an enormously valuable tool

- Design and development
- Cost and risk reduction
- Predicting operating envelope
- Reducing development timescales
- Maximising chance of success for full scale testing