Artificial motion data for navigation sensors of a submarine running in periscope depth below wave surface

2018.06.28.

Hyeon Kyu Yoon, Young-Ho Park, Juwon Seo (CWNU) Youngbum Park, Chanju Park (ADD)

Introduction

- Equations of motion
- Navigation data
- Simulation
- Conclusion

Introduction

Background

Submarine navigation

- GPS cannot be used.
- IMU: Dead reckoning
- Secondary navigational sensor: DVL, EM-Log, Depth gauge, etc.
- Development of navigation algorithm
 - Artificial data of navigation is necessary.
 - Especially the data during alignment near wave surface

Simulation program

- 6 DOF submarine motion for maneuvering
- Additional seakeeping motion during running or hovering near wave surface

Equations of motion

Coordinate systems

- Earth-centered Earth-fixed: Reference and position
- NED: Position and Euler angle
- Body-fixed: Describe 6 DOF equations of motion

- ♦ State variables → Velocity and Displacement
 - Linear and angular velocities
 - Latitude, longitude, height, and Euler angles

Equations of motion

6 DOF equations of motion

$$m\left[\underline{v}^{b'} + \underline{\omega}^{b}_{nb} \times \underline{v}^{b} + \underline{\omega}^{b}_{nb}' \times \underline{r}^{b}_{G} + \underline{\omega}^{b}_{nb} \times \left(\underline{\omega}^{b}_{nb} \times \underline{r}^{b}_{G}\right)\right] = \underline{f}_{HD} + \underline{f}_{HS} + \underline{f}_{G} + \underline{f}_{P} + \underline{f}_{\delta} + \underline{f}_{W} + \underline{f}_{C}$$
$$I\underline{\omega}^{b}_{nb}' + \underline{\omega}^{b}_{nb} \times \left(I\underline{\omega}^{b}_{nb}\right) + m\underline{r}^{b}_{G} \times \left(\underline{v}^{b'} + \underline{\omega}^{b}_{nb} \times \underline{v}^{b}\right) = \underline{m}_{HD} + \underline{m}_{HS} + \underline{m}_{G} + \underline{m}_{P} + \underline{m}_{\delta} + \underline{m}_{W} + \underline{m}_{C}$$

External force

- > HD, HS, G: Hydrodynamic, hydrostatic, and gravity
- > P, δ : Propeller and control plane
- > W, C: Wave and current

Kinematic relations

$$\underline{v}^{n} = C_{b}^{n} \underline{v}^{b}, \quad \underline{\dot{\eta}} = D_{b}^{n} \underline{\omega}_{nb}^{b}$$

$$\dot{\Phi} = \frac{v_N}{R_m + h}, \quad \dot{\Theta} = \frac{v_E}{(R_t + h)\cos\phi}, \quad \dot{h} = -v_D$$

External force

Hydrodynamic force

Feldman model (1979, NSRDC)

$$\begin{split} X_{HD} &= X_{\mu\nu} \dot{u} + X\left(u\right) + X_{\nu\nu} vr + X_{\nu q} wq + X_{\nu p} rp + X_{\nu\nu} v^{2} + X_{\mu\nu} w^{2} + X_{qq} q^{2} + X_{\nu r} r^{2} \\ Z_{HD} &= Z_{\mu\nu} \dot{w} + Z_{\dot{q}} \dot{q} + Z_{0} + Z_{\mu\nu} w + Z_{q} q + Z_{\nu p} vp + Z_{|\mu|} |w| + Z_{\mu\nu} |w\sqrt{v^{2} + w^{2}}| \\ &+ \frac{\rho}{2} C_{D} \int_{l} b(x) w(x) \sqrt{w^{2}(x) + v^{2}(x)} dx + \frac{\rho}{2} L \overline{C}_{L} \int_{x_{2}}^{x_{1}} v(x) \overline{v}_{FW} \left(t - \tau[x]\right) dx \\ M_{HD} &= M_{\mu\nu} \dot{w} + M_{\dot{q}} \dot{q} + M_{0} + M_{\mu\nu} w + M_{q} q + M_{\nu p} rp + M_{|\mu|} |w| + M_{\mu\nu} |w\sqrt{v^{2} + w^{2}}| + M_{\mu|\mu|} w \sqrt{v^{2} + w^{2}} \\ &+ \frac{\rho}{2} C_{D} \int_{l} x b(x) w(x) \sqrt{w^{2}(x) + v^{2}(x)} dx + \frac{\rho}{2} L \overline{C}_{L} \int_{x_{2}}^{x_{1}} xv(x) \overline{v}_{FW} \left(t - \tau[x]\right) dx \end{split}$$

Propeller and control force

$$X_{p} = \rho n^{2} D_{p}^{4} K_{T} \left(J_{p} \right)$$
$$K_{p} = \rho n^{2} D_{p}^{5} K_{Q} \left(J_{p} \right)$$

$$X_{\delta} = X_{\delta_{r}\delta_{r}}\delta_{r}^{2} + X_{\delta_{s}\delta_{s}}\delta_{s}^{2} + X_{\delta_{b}\delta_{b}}\delta_{b}^{2}$$
$$Z_{\delta} = Z_{\delta_{s}}\delta_{s} + Z_{\delta_{b}}\delta_{b} + Z_{\delta_{s}\eta}\delta_{s}\left(\eta - \frac{1}{C}\right)C$$
$$M_{\delta} = M_{\delta_{s}}\delta_{s} + M_{\delta_{b}}\delta_{b} + M_{\delta_{s}\eta}\delta_{s}\left(\eta - \frac{1}{C}\right)C$$

External force

Hydrostatic and gravitational force

$$X_{HS} + X_G = -(W - B)\sin\theta$$

$$Z_{HS} + Z_G = (W - B)\cos\theta\cos\phi$$

$$M_{HS} + M_G = -(z_G W - z_B B)\sin\theta - (x_G W - x_B B)\cos\theta\cos\phi$$

Wave effect

Superpose wave induced acceleration to maneuvering one

- > Smooth change of motion value \rightarrow Acceleration considered
- Response amplitude operator and ITTC wave spectrum

$$\dot{u}_{W} = -\sum_{i=1}^{N} \omega_{i}^{2} RAO_{x} \varsigma_{i} \cos\left[k_{i} \left(X \cos \alpha + Y \sin \alpha\right) - \omega_{i} t + \varepsilon_{x_{i}} + \delta_{i}\right]$$
$$\dot{w}_{W} = -\sum_{i=1}^{N} \omega_{i}^{2} RAO_{z} \varsigma_{i} \cos\left[k_{i} \left(X \cos \alpha + Y \sin \alpha\right) - \omega_{i} t + \varepsilon_{z_{i}} + \delta_{i}\right]$$
$$\dot{q}_{W} = -\sum_{i=1}^{N} \omega_{i}^{2} RAO_{\theta} k_{i} \varsigma_{i} \cos\left[k_{i} \left(X \cos \alpha + Y \sin \alpha\right) - \omega_{i} t + \varepsilon_{\theta_{i}} + \delta_{i}\right]$$

Hydrodynamic coefficient

Numerical PMM test

Slip wall

Drift test

Rotating arm test

Test	α [°],	β [°],	δ [°],	r' ,	
Static drift.	ب.0	2, 4, 6, 8, 12,	0,	0,	
Static angle of attack.	0, ±2, ±4, ±6, ±8,	0,	0	0,	
Static control plane.	0,,	0,.	0, 5, 10, 15, 20, 25, 30, 35,	0,,	
Turn₊	0,,	0,,	0,	0.12, 0.17, 0.21, 0.25, 0.29	
Drift and turn.	ب.0	±3, ±5, ±7, ±9,	0	0.21, 0.25, 0.29,	
Angle of attack and turn.	3, 5, 7, 9,	0,	ب0	0.21, 0.25, 0.29,	

Hydrodynamic coefficient

Horizontal plane

RAO (Response Amplitude Operator)

- ANSYS AQWA (3D panel method based on potential theory)
- Pre-calculation and interpolation for speed and heading
 - Speed: 2~20 knots, 2 knots interval
 - Wave heading: 0~180 degrees, 45 degrees interval
 - > Wave frequency: 0.2~3.0 rad/s \rightarrow Long-crested irregular wave

Wave

- Long-crested irregular wave
 - Superpose various regular waves
 - > ITTC wave spectrum \rightarrow Wave height
 - Random phase

RAO

11

RAO (Beam sea)

Speed change

12

RAO (Bow quartering sea)

• Depth change \rightarrow modeling using Exp(-kz)

13

Navigational data

Data stored in navigation sensors

- Measured or calculated values
- Earth's rotation and curved surface effect included

Sensor	Item	Unit	Reference		
INS	Position(Θ , Φ , h)	rad, m	Earth-fixed		
	Velocity(v_N, v_E, v_D)	m/s	Earth-fixed		
	Attitude(ϕ , θ , ψ)	rad	Earth and Body-fixed		
	Angular rate($\omega_x, \omega_y, \omega_z$)	rad/s	Body-fixed		
	Acceleration(a_x, a_y, a_z)	m/s ²	Body-fixed		
DVL	Velocity(u_r, v_r, w_r)	m/s	Body-fixed		
DM-Log	Forward speed(V)	m/s	Body-fixed		
Depth gauge	Depth(-h)	m	Earth-fixed		

Navigational data

IMU (Gyro and accelerometer)

Earth's rotation and curved surface effect (Transport rate)

$$\underline{\omega}_{ib}^{b} = \begin{bmatrix} \omega_{x} & \omega_{y} & \omega_{z} \end{bmatrix}^{T} = \underline{\omega}_{nb}^{b} + C_{n}^{b} \underline{\omega}_{in}^{n}, \text{ where, } \underline{\omega}_{in}^{n} = \underline{\omega}_{ie}^{n} + \underline{\omega}_{er}^{n}$$

$$\underline{a}^{b} = \begin{bmatrix} a_{x} & a_{y} & a_{z} \end{bmatrix}^{T} = C_{n}^{b} \begin{bmatrix} \underline{\dot{v}}^{n} + (2\underline{\omega}_{ie}^{n} + \underline{\omega}_{en}^{n}) \times \underline{v}^{n} - \underline{g}^{n} \end{bmatrix}$$

$$\underline{\omega}_{ie}^{n} = \begin{bmatrix} \Omega_{ER} \cos \Phi & 0 & -\Omega_{ER} \sin \Phi \end{bmatrix}^{T}$$

$$\underline{\omega}_{en}^{en} = \begin{bmatrix} \frac{v_{E}}{R_{t} + h} & -\frac{v_{N}}{R_{m} + h} & -\frac{v_{E} \tan \Phi}{R_{t} + h} \end{bmatrix}^{T}$$

Sensor position

$$\underline{\dot{v}}_{s}^{b} = \underline{v'}^{b} + \underline{\omega}_{nb}^{b} \times \underline{v}^{b} + \underline{\omega'}_{nb}^{b} \times \underline{r}_{s}^{b} + \underline{\omega}_{nb}^{b} \times \left(\underline{\omega}_{nb}^{b} \times \underline{r}_{s}^{b}\right)$$

Noise effect $z = (1 + \varepsilon_{SF}) x + \varepsilon_{bias} + \varepsilon_{noise}$

Computer program

- Visual Studio 2010 MFC based dialog program
- Main class: Submarine
- Subclass: Hull, Propeller, ControlPlane, Operator, Sensor, Wave

Sample submarine

 Thune, S., "Simulation of Submarine Manoeuvring", Master thesis, Royal Institute of Technology, Sweden, 2015

T 9 9 7		$L_{OA} = 62.329 m$					X		Y		Z
		∇ 1942.3 m ³				$X'_{\dot{u}}$	= -0.00048129	$Y'_{\dot{p}}$	= -0.00049893	$Z'_{\dot{a}}$	= -0.00020374
		Height 11.925 m^2				$X'_{\rm rp}$	= 0.00049893	$Y'_{\dot{r}}$	= -0.0016656	$Z'_{\dot{w}}$	= -0.01334
		$S_{wet} = 1293.9 m^2$				X'_{qq}	= 0.00080214	$Y'_{\dot{\mathbf{v}}}$	= -0.01744	$Z'_{\rm vp}$	= -0.01744
	J.	D = 3.37 m dhn = 6.897 m	$x_{\rm G}$	= 0	[m]	$X'_{a a }$	= 0	$Y'_{\rm p}$	= -0.0012749	Z'_{q}	= -0.0040505
		wep acor in	$y_{ m G}$	= 0	[m]	$X'_{\rm rr}$	= 0.001123	Y'_{pq}	= 0.00020374	$Z'_{a a }$	= 0
			$z_{\rm G}$	= -0.36697	[m]	$X'_{\rm vr}$	= 0.016132	Y'_{wp}	= 0.01334	$Z'_{\rm rr}$	= 0
		-	x_{B}	= 0	[m]	X'_{uu}	= -0.0011095	Y''_r	= -0.00082411	$Z'_{\rm vr}$	= 0
	AD.		$y_{ m B}$	= 0	[m]	X'_{vv}	= 0.011293	$Y'_{\mathbf{r} \mathbf{r} }$	= 0	$Z'_{\rm vv}$	= 0
◎ <u> </u>	S		$z_{\rm B}$	= -0.54848	[m]	X'_{ww}	= 0.0037018	$Y'_{\rm v r }$	= 0	$Z'_{\rm vw}$	= 0
			$k_{\rm xx}$	= 0.04176	[-]	$X'_{w w }$	= 0	$Y'_{ \mathbf{v} \mathbf{r}}$	= 0	$Z'_{\rm w}$	= -0.023841
			k_{yy}	= 0.24012	[-]	X'_{wq}	= -0.012339	$Y'_{\rm wr}$	= 0	$Z'_{ w }$	= 0
•	-		k_{zz}	= 0.23858	[-]	$X'_{w q }$	= 0	$Y'_{\rm v}$	= -0.061469	Z'_{ww}	= 0.0033377
	A.		k _{xy}	= 0.0010303	[-]	$X'_{\delta_r \delta_r}$	= -0.0015181	$Y'_{\rm v v }$	= -0.063314	$Z'_{w w R}$	= 0
	C.		k _{zx}	= 0.031494	[-]	$X'_{\delta_r \delta_r \eta}$	= 0	$Y'_{\rm vw}$	= 0	$Z'_{w q }$	= 0
			k _{yz}	= 0.0021967	[-]	X'_{δ_s}	= 0	Y'_{δ_r}	= 0.0034403	$Z'_{\rm wq}$	= 0
				= 1.17		$X'_{\delta_s \delta_s}$	= -0.0015181	$Y'_{\delta_r \delta_r }$	= 0	$Z'_{\delta_{\mathrm{s}}}$	= -0.0034403
•————	•		32 m	= -1.261 = 10.825	[-]	$X'_{\delta_s \delta_s \eta}$	= 0	$Y'_{\delta_r\eta}$	= 0.00034403	$Z'_{\delta_s \delta_s }$	= 0
			x1 xmv	-10.825 -10.825	[m]	$X'_{\delta_{\mathbf{b}}}$	= 0	$Y'_{ \mathbf{r} \delta_{\mathbf{r}}}$	= 0	$Z'_{\delta_{\mathtt{s}}\eta}$	= -0.00034403
			2FW	= 10.025 = 0	[m]	$X'_{\delta_b \delta_b}$	= -0.0017798	Y'_*	= 0	$Z'_{ q \delta_s}$	= 0
	· ·		BST	= 0.133	[rad]	$X'_{rr\xi}$	= 0	$Y'_{r\xi}$	= 0	$Z'_{\delta_{\mathbf{b}}}$	= -0.003852
°			Tap	= -33.978	[m]	$X'_{vv\xi}$	= 0	$Y'_{v\xi}$	= 0	$Z'_{\delta_b \delta_b }$	= 0
			ap		[]					Z'_*	= -0.00029985
	sh .									$Z'_{rr\xi}$	= 0
										$Z'_{vv\xi}$	= 0
										Z'_{ξ}	= 0
										$Z'_{\xi \theta }$	= 0

GUI to control a submarine

- Manual and automatic mode
 - Automatic mode: Command and way point

Command mode

IMU data

Angular velocity and attitude

19

Conclusion

Submarine 6 DOF equations of motion

- Maneuvering motion based on Feldman model
- Wave effect added by RAO calculated by ANSYS AQWA
- Hydrodynamic coefficient and RAO
 - Numerical PMM test and RAO for various regular wave

Navigational data

IMU data including Earth's rotation and transport rate

Simulation

- MFC based GUI program to manage submarine motion
- Binary output data file for confirming navigational algorithm

Thank you for your kind attention

Hyeon Kyu Yoon Associate Professor Dept. of Naval Architecture & Marine Engineering Changwon National University, KOREA hkyoon@changwon.ac.kr O) +82-55-213-3683 F) +82-55-213-3689 M) +82-10-2376-7781