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A practical problem

• How much should the sonar operator trust the system 
when some of the sensors fail (or disabled)?

?

?
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How to report? 

- In general the user manual of a given system provides the 
following information;

- The system is operational, up to N sensor failures.

- The system is partially operational, up to M sensor failures.

- The system is not operational, after K sensor failures. 



≈

×
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How to report?

- The drawback here is these bounds are loose.
- i.e. The system may tolerate the loss of sensors in certain 

angular sector. 

- The bounds have to be loose, as the number of possible 
combinations become very large, as number of sensors 
increase.

2𝑁subsets

→ 𝑆𝑡𝑖𝑙𝑙 𝑢𝑠𝑎𝑏𝑙𝑒 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑠𝑒𝑐𝑡𝑜𝑟
×
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Performance prediction

• System performance can be assessed using 
performance lower bounds.

• Two classes of performance bounds exist

o Bayesian bounds

– The parameter to be estimated is a random 
variable with a known a-priori distribution.

o Deterministic bounds

– The parameter to be estimated is a non-random 
parameter 
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Performance Prediction

 Deterministic CRLB can be evaluated. 

 Bound is optimistic, 

 Under low SNR.

 Under fading conditions.

 Deterministic version of the Ziv-Zakai
Bounds can be used.

 Tighter lower bound, even at low SNR 
conditions!
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SNR Regions

 CRLB can not model gross-error events, since 
it only considers the second derivative of the 
beampattern at the mainlobe.

 Consequently the errors produced by side-lobe 
jumps (gross errors at low SNR values) can not 
be modeled.

 CRLB is not a tight bound at low SNR values.

 Performance bounds are generally divided into three regions w.r.t. SNR:

Apriori region: Region in which the estimate is uniformly distributed in the a priori domain of the unknown 
parameter (region of low SNRs).

Threshold region: Region of transition between the apriori and asymptotic regions (region of medium SNRs). The 
mean squared error is dominated by gross error events.

Asymptotic region: Region in which the CRLB is achieved (region of high SNRs). Gross error probability is negligibly 
small.
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Signal model

෤𝑦𝑛𝑘 = ǁ𝑠𝑘𝜼𝒏𝑒
𝑗𝜃𝑐 + ෩𝑵𝒏𝒌

𝜂𝑛~𝐶𝑁( ҧ𝜂𝐼𝑛 + 𝑗 ҧ𝜂𝑄𝑛 , 2𝜎
2 )

෤𝑦𝑛𝑘 = ǁ𝑠𝑘 ҧ𝜂𝐼𝑛 + 𝑗 ҧ𝜂𝑄𝑛 𝑒𝑗𝜃𝑐 + ǁ𝑠𝑘 ҧ𝜉𝐼𝑛 + 𝑗 ҧ𝜉𝑄𝑛 𝑒𝑗𝜃𝑐 + ෩𝑁𝑟

Specular component Random component

𝐾 =
𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟 𝑝𝑜𝑤𝑒𝑟

𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑤𝑒𝑟
=

ҧ𝜂𝐼
2 + ҧ𝜂𝑄

2

𝑣𝑎𝑟 𝜂𝐼 + 𝑣𝑎𝑟 𝜂𝑄
=
𝑚𝐼

2 +𝑚𝑄
2

2𝜎2

Rician factor

The signal model under Rician fading is as follows;
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Channel Fading

Near 9 dB loss 
between two  
consecutive pulses.

Receiver Projector
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Ziv-Zakai and Cramer-Rao Bounds
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Cramer-Rao Bound under Rician Fading

The Fisher Information Matrix for a complex Gaussian pdf is as follows;

FIM = 𝐈𝜉 𝑖𝑗
= 𝑡𝑟 𝐂𝑥

−1 𝜉
𝜕𝐂𝑥 𝜉

𝜕𝜉𝑖
𝐂𝑥
−1 𝜉

𝜕𝐂𝑥 𝜉

𝜕𝜉𝑗
+ 2Re

𝜕𝝁𝑯 𝜉

𝜕𝜉𝑖
𝐂𝑥
−1 𝜉

𝜕𝝁 𝜉

𝜕𝜉𝑗

CRLB = FIM−1

𝑟𝑛 = 𝜂𝑛𝐴𝑠 exp 𝑗𝜃𝑛 + 𝑛𝑛 𝒓 =

𝑟0
𝑟1
⋮

𝑟𝑁−1

, 𝒂𝜃 =

1
𝑒𝑗𝜃

⋮
𝑒𝑗𝜃(𝑁−1)

𝜼𝑛~𝐶𝑁(𝜇, 2𝜎𝜂
2), 𝑛𝑛~𝐶𝑁(0, 2𝜎𝑛

2), 𝑁, 𝐴𝑠 ∈ ℝ

𝝁 = 𝐸 𝒓 = 𝜇𝐴𝑠𝒂𝜃

𝐂𝑥 = 𝐸 𝒓− 𝝁 𝒓 − 𝝁 𝑯 = 2𝜎𝜂
2𝐴𝑠

2𝒂𝜃𝒂𝜃
𝑯 + 2𝜎𝑛

2𝑰𝑁
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Ziv-Zakai Bounds

𝑍𝑍𝐵 = න
0

∞

𝜈 𝐴 ℎ 𝑃𝑒(ℎ) ℎ𝑑ℎ

𝐴 ℎ = න
−∞

∞

min 𝑝𝑢 𝑢 , 𝑝𝑢 𝑢 + ℎ 𝑑𝑢

𝑢~𝑢𝑛𝑖𝑓 0,2𝜋 → 𝐴 ℎ =
2𝜋 − ℎ

2𝜋

𝑍𝑍𝐵 = න
0

2𝜋

𝜈 𝑃𝑒 ℎ
2𝜋 − ℎ

2𝜋
ℎ𝑑ℎ

*Figure taken from: K.Bell, Y.Eprahim, H.L.Van Trees, “Explicit Ziv Zakai Lower Bound for Bearing Estimation”, IEEE Transactions 

on Signal Processing, Vol. 44, No:11, Nov. 1996.

*Valley filling function

No angular dependence ! 

𝑃𝑒 ℎ ∶ Minimum probability of error 

between deciding 𝐻0: 𝑢 and𝐻1: 𝑢 + ℎ.

Dividing the parameter space into 

smaller intervals does not solve the 

issue, as the bound ignores gross 

errors larger than the sub-interval size.
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Approximate Deterministic ZZB

Discretize the 
parameter space

This is an approximate lower bound for ML type estimators.
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Stein’s unified analysis of error probability
Summary of the results for FSK in Stein’s paper*:

 𝑧 𝑖𝑓 = 𝑚𝑖𝑓 + 𝑗𝜇𝑖𝑓 =   𝑧 𝑖𝑓  𝑒
𝑗𝜃𝑖𝑓 , 𝑖 = 1, 2 

 𝑆𝑖𝑓 =
1

2
 𝑧 𝑖𝑓  

2
=

1

2
 𝑚𝑖𝑓

2 + 𝜇𝑖𝑓
2  , 𝑁𝑖𝑓 =

1

2
 𝑧𝑖𝑓 − 𝑧 𝑖𝑓  

2
 

𝜌𝑓 𝑁1𝑓𝑁2𝑓 =
1

2
 𝑧1𝑓 − 𝑧 1𝑓 

∗
 𝑧2𝑓 − 𝑧 2𝑓 

                              
 

𝜌𝑓 = 𝜌𝑐𝑓 + 𝑗𝜌𝑠𝑓 =
1

2 𝑁1𝑓𝑁2𝑓

 𝑧1𝑓 − 𝑧 1𝑓 
∗
 𝑧2𝑓 − 𝑧 2𝑓 

                              
 

1

2
 𝑧1𝑓 − 𝑧 1𝑓  𝑧2𝑓 − 𝑧 2𝑓 
                             = 0 

𝜙 = arg 𝜌𝑐𝑓 + 𝑗𝜌𝑠𝑓  

 
𝑎
𝑏
 =

1

2

 
 
 
 𝑆1𝑓 + 𝑆2𝑓 + 2 𝑆1𝑓𝑆2𝑓 cos 𝜃1𝑓 − 𝜃2𝑓 + 𝜙 

𝑁1𝑓 + 𝑁2𝑓 + 2 𝑁1𝑓𝑁2𝑓  𝜌𝑓  
2

+
𝑆1𝑓 + 𝑆2𝑓 − 2 𝑆1𝑓𝑆2𝑓 cos 𝜃1𝑓 − 𝜃2𝑓 + 𝜙 

𝑁1𝑓 + 𝑁2𝑓 − 2 𝑁1𝑓𝑁2𝑓  𝜌𝑓  
2

∓
2 𝑆1𝑓 − 𝑆2𝑓 

  𝑁1𝑓 + 𝑁2𝑓 
2
− 4𝑁1𝑓𝑁2𝑓  𝜌𝑓  

2

 
 
 
 

 

  

𝐴 =
𝑁1𝑓 − 𝑁2𝑓

  𝑁1𝑓 + 𝑁2𝑓 
2
− 4𝑁1𝑓𝑁2𝑓  𝜌𝑓  

2
 

𝑃 =
1

2
1 − 𝑄1 𝑏, 𝑎 + 𝑄1 𝑏, 𝑎 −

𝐴

2
exp −

𝑎 + 𝑏

2
𝐼0 𝑎𝑏 .

𝑧1𝑓 = 𝑏𝑡
𝑓

 and 𝑧2𝑓 = 𝑏𝑙
𝑓

 

*S. Stein, “Unified analysis of certain coherent and non-coherent binary communication systems,” IEEE Trans. Inf. Theory, vol. IT-10, 

January 1964, pp. 43–51.

Where 𝑄1 is the Marcum-Q function and 𝐼0 is the modified Bessel function of the first kind.
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Online Performance Prediction

- Case study:
Circular array with directional sensors

Sensor patterns:

𝐵𝑛 𝜙 =
1

2
cos 𝜙 − 𝜙𝑛 +

1

2

2

𝜙𝑛 =
𝑛−1 𝜋

6
, 𝑛 = 1, 2, … , 12.  
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K → ∞

Online Performance Prediction

K = 10
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K → ∞

Online Performance Prediction

K = 10
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Summary

- Deterministic lower bounds can be utilized for on-
line performance estimation of the system.

- Extension of Ziv-Zakai bounds for an approximate 
deterministic bound is used in this work.

- Closed form expressions are available.

- Actual systems can be equipped with a system 
performance prediction tab, to provide the user with 
current system capabilities.


