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A practical problem

* How much should the sonar operator trust the system
when some of the sensors fail (or disabled)?

e o o o o o o o o
P g g R g g g

Qoooooooo#?
+t .2 -3 4 5 "6 . T -8 -9 ™

.i .2 .3 ‘4 .5 ‘6 .? .B .9- ?

251

T T T T T T
s NO fault
st sensor is faulty
Sensor 3, 4, 5 are faulty |

M

Wntorsc

0 20 40 60

80 100 120 140 160 180
Bearing [degrees]



uy, aselsan

<

OADNIE How to report?

Undersea Defence Technology

13-15 May 2019
SR ESN -  In general the user manual of a given system provides the

following information;
- The system is operational, up to N sensor failures.
- The system is partially operational, up to M sensor failures.
- The system is not operational, after K sensor failures.
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SRR -  The drawback here is these bounds are loose.

- i.e. The system may tolerate the loss of sensors in certain

angular sector.
X ‘ /—> Still usable in this sector

- The bounds have to be loose, as the number of possible
combinations become very large, as number of sensors
increase.
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LRl ©  System performance can be assessed using

performance lower bounds.
* Two classes of performance bounds exist

o Bayesian bounds

— The parameter to be estimated is a random
variable with a known a-priori distribution.

o Deterministic bounds

— The parameter to be estimated is a non-random
parameter
¥ #UDT2019
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o Deterministic CRLB can be evaluated.

10° T
m Bound is optimistic, = VCRLB
Maxinmmm Likelihood
U n d er | ow S N R : —_— 1]'3’{( }i"\li{ }Illxllti{e:,llpl{l}llti'l I:}{lilat ion
Under fading conditions. 10
g
102F
o Deterministic version of the Ziv-Zakai
Bounds can be used.
= Tighter lower bound, even at low SNR "0 s 0 - 5 5
SNR, [dB]

conditions!
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S — = CRLB .
0 CRLB can not model gross-error events, since

\ it only considers the second derivative of the
\ E beampattern at the mainlobe.
o Consequently the errors produced by side-lobe
\ jumps (gross errors at low SNR values) can not
J be modeled.

Apriori region Threshold region Asymptotic region

=)
T

RMSE [radians]

=l
S
T

m  CRLBis not a tight bound at low SNR values.
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o Performance bounds are generally divided into three regions w.r.t. SNR:

Apriori region: Region in which the estimate is uniformly distributed in the a priori domain of the unknown
parameter (region of low SNRs).

Threshold region: Region of transition between the apriori and asymptotic regions (region of medium SNRs). The
mean squared error is dominated by gross error events.

Asymptotic region: Region in which the CRLB is achieved (region of high SNRs). Gross error probability is negligibly
small.
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R u— The signal model under Rician fading is as follows;

~ o~ 9 g
Ynk = Sknne] €+ Nnk

nnNCN(ﬁIn +jﬁQn' 207 )

T = Sl + 7T)% + 5,(6, + 16 )e% + I,
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Specular component Random component

_ specular power ()% + (ﬁQ)Z _mf +mj

K = = =
/ random power  var(n;) + var(n,) 202
Rician factor
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Time domain data

Near 9 dB loss
between two
consecutive pulses.

Tirne, seconds

Magnitude square of the envelope signal
T T

Magniude?, dBA2

Tirne, seconds

Frequency (kHz)

Receiver Projector
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Ziv-Zakai and Cramer-Rao Bounds

Ziv-Zakai and Cramer-Rao bounds for different Rician factors
(N =32, § =0.45)
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The Fisher Information Matrix for a complex Gaussian pdf is as folloy

0C(8) _,
aCEOR T

() ——

FIM = [Ig]ij =tr {C; 1 9¢; 0¢;

acx(E)} + 2Re {aﬂH(f) au(f)}

|CRLB = FIM~!|
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77B = f v{A(h)P,(h)}hdh
0

Vif(h)}
A(h) = j min(py (W), p, (u + h))du i)
—o :
£(0,2m) » A() = "
~ e d =
u~unif (0,2m 2T P,(h) : Minimum probability of error
/—-p between deciding Hy: u and Hy: u + h.
ZZB—jzn P(if)zn_h hdh
B 0 1'e 21 Dividing the parameter space into

smaller intervals does not solve the
iIssue, as the bound ignores gross
No angular dependence !

errors larger than the sub-interval size.

, #U DTZO 19 *Figure taken from: K.Bell, Y.Eprahim, H.L.Van Trees, “Explicit Ziv Zakai Lower Bound for Bearing Estimation”, IEEE Transactions
on Signal Processing, VVol. 44, No:11, Nov. 1996.




uy, aselsan

<

DN Approximate Deterministic ZZB

Undersea Defence Technology

13-15 May 2019

Stockholmsmassan, Sweden

" (00,0, + 2€) + Py™ (04,0, — 2€))de
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¥ #UDT2019 This is an approximate lower bound for ML type estimators.
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Zlf = b[ and sz = blf

Zip = myp + jup = |zl %7, i=1,2
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Pr = Pef +Jpsy = W(zu = 21) (72 —
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\/(le +Nog)” = 4y Ny oy |

a+b
2

P31~ (V5@ + & (VB.v)] - g exp (- 57 | o(aD),

Where Q4 is the Marcum-Q function and I, is the modified Bessel function of the first kind.

" # U DTZO 19 *S. Stein, “Unified analysis of certain coherent and non-coherent binary communication systems,” IEEE Trans. Inf. Theory, vol. IT-10,
January 1964, pp. 43-51.
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- Case study:

Array geometry and sensor beampatterns

T

,//

SR S | Circular array with directional sensors
g ]
~~—_ | Sensor patterns:
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Array geometry and sensor beampatterns Approximate Deterministic Ziv-Zakai Bounds
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Approximate Deterministic Ziv-Zakai Bounds

Array geometry and sensor beampatterns
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sl - Deterministic lower bounds can be utilized for on-

line performance estimation of the system.

- Extension of Ziv-Zakai bounds for an approximate
deterministic bound is used in this work.
- Closed form expressions are available.

- Actual systems can be equipped with a system
performance prediction tab, to provide the user with
current system capabilities.
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