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Abstract — In this paper the performance of pre-trained deep convolutional neural networks (CNNs) is 

compared to that of a classical machine learning approach for false alarm reduction of an active sonar application. 

Several pre-trained deep CNNs that are firstly introduced in the ImageNet Large Scale Visual Recognition 

Challenges (ILSVRC) are considered for classifying sonar contacts. The inputs for the CNNs are two-

dimensional sonar images (level vs. bearing and time/range) of the contacts. Furthermore, a hand-crafted feature 

based feedforward neural network (FNN) is considered. The performance of the classifiers is compared to that 

of the standard active signal processing by means of Receiver-Operating-Characteristic (ROC) curves. It is 

shown that both classification techniques outperform the standard active signal processing in which the detector 

threshold represents the only adaptable parameter. 

1 Introduction  

In the last decades the requirements for active sonar appli-

cations changed essentially. While in the past the detection 

and classification of targets was done manually by sonar 

operators nowadays the systems should work more and 

more automatically. Ideally, a modern sonar system should 

reliably detect, track and classify threats and report an 

alarm. Therefore, the biggest challenge is to achieve a high 

probability of detection and simultaneously a low false 

alarm rate. In common standard high frequency active so-

nar applications generally two different pulse types are 

used; on the one hand broadband frequency modulated 

(FM) pulses and on the other hand narrow-band continu-

ous wave (CW) pulses. In case of linear or hyperbolic fre-

quency modulated (LFM/HFM) pulses usually only the 

signal-to-noise ratio (SNR) of the contacts is used as meas-

ure of reliability whereas for CW pulses in addition to the 

SNR also the Doppler information is considered. How-

ever, it is known that echoes contain more information that 

can be used to assess their relevance and hence improve 

the detection performance.  

In previous works [1]-[2] it is shown that the extraction of 

features of the contacts in combination with supervised 

machine learning algorithms is suited to reduce the false 

alarm rate of an active sonar system. Moreover, it could be 

shown that convolutional neural networks (CNNs) that au-

tomatically extract features out of labelled input signals or 

images are suited for this task. 

This work is an extension of the methods described in [2]. 

The performance of various pre-trained CNNs is compared 

to that of a hand-crafted feature based feedforward neural 

network (FNN) regarding their suitability for reducing the 

false alarm rate with minor degradation of probability of 

detection. All algorithms are applied to recorded data of 

active diver detection trials that were carried out in coop-

eration between the Bundeswehr Technical Center WTD 

71 and ATLAS ELEKTRONIK. The trials were conducted 
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with the "Cerberus" diver detection sonar developed by 

ATLAS ELEKTRONIK UK. It should be noted that all re-

sults are based on the transmission of FM-pulses which are 

processed offline with an experimental signal processing 

in MATLAB. In total 53 hand-crafted features from differ-

ent categories are extracted from the contacts and represent 

the inputs of the FNN. The FNN consists of one hidden 

layer and an output layer with two neurons for binary clas-

sification in the categories target contact and false alarm. 

For the use of CNNs a region of interest (ROI) of the two-

dimensional sonar images (level vs. bearing and 

time/range) is extracted for each contact. Ten different 

CNNs are considered; a shallow CNN trained from scratch 

and nine pre-trained deep networks that are originally de-

signed for image classification (AlexNet [3], GoogLeNet 

[4], Inception v3 [5], ResNet-18, ResNet-50, ResNet-101 

[6], SqueezeNet [7], VGG-16 and VGG-19 [8]). The clas-

sification performance is assessed by means of Receiver-

Operating-Characteristic (ROC) curves and the generali-

sation respectively the robustness of the classifiers is 

proved by testing the algorithms with unseen data recorded 

in different environments. 

2 Data for Classification  

The contacts that are forwarded to the machine learning 

algorithms are derived by a standard active signal 

processing chain that contains the steps beamforming, 

matched-filtering, normalisation, detection and tracking. 

The results from the tracking are used as ground truth for 

contact labelling. All contacts that belong to the track that 

is assigned to the diver, are labelled as “Diver Contact” 

and all other contacts are labelled as “False Alarm”. A 

more detailed description of the labelling process can be 

found in [2]. In total six datasets from three different diver 

detection trials that are recorded in different environments 

are considered. From each of the three trials two datasets 

are chosen; one for training and one for testing the classifi-
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Table 1: Information for considered datasets for classification. 

Shortcut 
Pulse Parameters 

# Diver Contacts # False Alarms 
Type Centre Frequency Bandwidth Length 

DTrainE1 HFM 100 kHz 12 kHz 50 ms 255 21831 

DTrainE2 LFM 100 kHz 20 kHz 100 ms 136 21141 

DTrainE3 HFM 100 kHz 20 kHz 100 ms 320 3761 

DTestE1 HFM 100 kHz 12 kHz 50 ms 356 37843 

DTestE2 LFM 100 kHz 20 kHz 100 ms 194 22484 

DTestE3 HFM 100 kHz 20 kHz 100 ms 187 2484 

cation algorithms. Some information about the considered 

datasets are given in Table 1. The expressions E1, E2, E3 in 

the shortcut indicate the three different environments in 

which the data were recorded. Since the performance of 

CNNs increases with the amount of training data, the three 

listed training datasets from different diver detection trials 

(DTrainE1, DTrainE2, DTrainE3) are merged to a big training 

dataset. Furthermore, three other datasets from the same 

trials as the three training datasets are chosen as test 

datasets (DTestE1, DTestE2, DTestE3). From Table 1 it can be 

seen that the pulse parameters as well as the number of 

diver contacts and false alarms differ from dataset to 

dataset. 

3 Classification Methods 

In this work two different classification techniques are 

considered. On the one hand a classical hand-crafted 

feature based technique and on the other hand convolu-

tional neural networks that intrinsically extract relevant 

features of given input images or signals during the 

classification process. All considered neural networks are 

trained and tested with the Neural Network Toolbox in 

MATLAB. 

3.1 Hand-Crafted feature based classification 

The hand-crafted feature based classification is considered 

by means of an FNN. The active signal processing chain is 

extended by a feature extraction method. For each contact 

resulting from the detection, in total 53 features from 

different categories are extracted. Some examples for the 

extracted features are given with respect to the snapshot of 

the two-dimensional data of a diver contact presented in 

Figure 1. On the horizontal axis a section of 7 m in range 

direction is shown. In the vertical domain the signals of 19 

adjacent beams are presented. The lower image represents 

the output of the detector. From this data the maximum 

extent in range direction as well as in beam direction are 

extracted and represent two features. In this example the 

extent in range direction is ≈ 1 m and the extent in beam 

direction is 5 Beams. The upper image illustrates the 

corresponding normalised data, in which the contact pixels 

of the diver contact are highlighted by the white edges. 

From the highlighted area e.g. the maximum and the mean 

of the SNR values are extracted as another two features. In 

the standard active signal processing, only the SNR is used 

for detection so that a contact only occurs if the SNR 

exceeds the detector threshold. Hence, the maximum SNR 

of a contact represents the reference feature of the standard 

signal processing. In the following the maximum SNR of 

a contact is referred to as “Contact SNR”. 

 

Figure 1: Exemplary diver contact after normalisation and 

detection. 

The extracted features are used to train a feedforward 

neural network (FNN). According to the universal 

approximation theorem, an FNN consisting of one hidden 

layer and a sufficient number of neurons is able to approxi-

mate any continuous function with sufficient accuracy 

under the constraint that the activation function is 

bounded, continuous and nonconstant [9]. Regarding this, 

the FNN in this work consists of one hidden layer and the 

activation function is the hyperbolic tangent which fulfils 

the aforementioned constraints. The structure of the used 

FNN is illustrated in Figure 2. It can be seen that the input 

of the network consists of 53 input variables representing 

the extracted features. These are forwarded to 20 neurons 

in the hidden layer. The output layer of the network 

consists of two neurons and uses the softmax function for 

the calculation of a probability of class affiliation.  

The final weights of an FNN that result from the training 

process depend on their initial setting. Therefore, in this 

work the FNN is trained 30 times with different random 
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initialisations and the best performing constellation is 

selected on the basis of an appropriate performance 

criterion that will be described later.  

 
Figure 2: Structure of used Feedforward Neural Network. 

3.2 Convolutional Neural Networks 

In addition to the hand-crafted feature based FNN, ten dif-

ferent CNNs are considered. These require a two-dimen-

sional image as input. Hence, for each contact a region of 

interest (ROI) of the normalised two-dimensional sonar 

images is extracted. An example for the extraction of the 

input data can be given by the diver contact shown in Fig-

ure 1. The normalised data are stored for a section of ±2 m 

and ±5 Beams around the pixel of the weighted contact 

centroid. This results in an input image with a size of 

142 × 11 pixel which is shown in Figure 3.  

 
Figure 3: Exemplary ROI that is used as input image for CNNs. 

It can be seen that the contact and its surrounding area 

build the ROI that represents the input of the CNNs. The 

intensities of the input images are the linear SNR values of 

the normalised data. In this work on the one hand a shallow 

CNN which is trained from scratch is considered. The 

structure of the network is illustrated in Figure 4. It can be 

seen that the network consists of only one convolutional 

layer followed by an average pooling layer. Furthermore, 

the fully connected layer consists of one hidden layer with 

4096 neurons and one output layer with two neurons for 

binary classification.  

 
 

Figure 4: Structure of CNN trained from scratch. 

On the other hand, the pre-trained deep networks AlexNet, 

GoogLeNet, Inception v3, ResNet-18, ResNet-50, Res-

Net-101, SqueezeNet, VGG-16 and VGG-19 are consid-

ered. These networks are firstly introduced in the 

ImageNet Large Scale Visual Recognition Challenges 

(ILSVRC) and originally trained to distinguish images of 

1000 different classes containing various types of ships, 

animals, cars, food, etc. However, in this work their per-

formance for classifying sonar contacts is considered. 

Since the pre-trained networks require images that have a 

size of 

• 224 × 224 × 3 (GoogLeNet, ResNet, VGG) 

• 227 × 227 × 3 (AlexNet, SqueezeNet) 

• 299 × 299 × 3 (Inception) 

it is necessary to adapt the extracted ROIs of the sonar con-

tacts. Therefore, the ROIs of size 142 × 11 have to be 

resampled to the above-mentioned size. It can be seen that 

the third dimension of the input size is three which means 

that all networks use R-G-B images as input. In this work 

the ROIs of the sonar contacts are stored as grey scale im-

ages that are then forwarded to all three channels (R, G and 

B). In addition to the adaptation of the input images also 

the output layers of the networks have to be modified. 

Since the pre-trained networks are trained for distinguish-

ing images of 1000 different classes, the output layers with 

1000 neurons have to be replaced by output layers with 

two neurons for distinguishing diver contacts and false 

alarms.  

For the transfer learning of the pre-trained networks the 

training options in MATLAB are set to 

• sgdm (stochastic gradient descent with momentum) 

• MaxEpochs: 6 

• MiniBatchSize: 50 

• InitialLearnRate: {1e-4, 1e-3,  

                   5e-2, 1e-2} 

• Shuffle: every-epoch 

• LearnRateSchedule: piecewise 

• LearnRateDropPeriod: 2 

• LearnRateDropFactor: 1e-1. 

It can be seen that four different initial learning rates are 

considered. The aim of this is to investigate whether a 
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slight or a strong adjustment of the kernel weights leads to 

better classification results. Since the output layer is re-

placed and the weights are initialised randomly, the learn-

ing rate for the output layer may need to be higher than the 

learning rate for the kernel weights in the convolutional 

layers. Therefore, the learning rates mentioned above can 

be multiplied by the factor given with the training options 

• WeightLearnRateFactor 

• BiasLearnRateFactor 

to increase the learning rates for the output layer. Four dif-

ferent weighting factors (1, 10, 50, 100) are considered, so 

that in total 16 different constellations of each network are 

trained. Moreover, each network is trained three times 

which results in 48 different constellations. 

4 Classification Results 

All previously described networks are trained with the 

merged training dataset consisting of DTrainE1, DTrainE2 and 

DTrainE3 and tested with each of the three test datasets. The 

performance of the classifiers is measured by means of Re-

ceiver-Operating-Characteristic (ROC) curves. In Figure 5 

exemplarily four different ROC curves are shown. The 

performance of the standard active signal processing for 

dataset DTestE2 is displayed by the black ROC curve. The 

false positive rate (FPR) of one means that 100% of the 

22484 detected false alarms are available. Similarly, the 

true positive rate (TPR) of one indicates that all 194 diver 

contacts are present. An increase of the detection threshold 

in the standard signal processing leads on the one hand to 

a lower FPR but on the other hand to a lower TPR. In the 

ideal case the TPR stays at a value of one (all diver con-

tacts remain) whereas the FPR goes to zero (no false 

alarms). 

 
Figure 5: ROC curves of the Contact SNR, FNN, Shallow CNN 

and GoogLeNet for test dataset DTestE2. 

In addition to the ROC curve for the Contact SNR also the 

results of the hand-crafted feature based FNN as well as 

the shallow CNN trained from scratch and the transfer 

learned GoogLeNet are displayed. It can be seen that all 

classifiers achieve a significantly lower FPR compared to 

the Contact SNR for almost all TPR values. Furthermore, 

the ROC curves illustrate that none of the three considered 

classifiers performs best in all areas. 

Since in total 30 constellations of the FNN and 48 of each 

pre-trained CNN are trained, the best performing networks 

have to be figured out by a suitable performance criterion. 

In this work the area under the ROC curve (AUC) is cho-

sen. For each trained network the AUCs for the three test 

datasets are calculated and finally the network that leads to 

the highest mean AUC over all three test datasets is se-

lected for further analyses. For all pre-trained CNNs dif-

ferent combinations of the training parameters “Initial-

LearnRate”, “WeightLearnRateFactor” and “BiasLearn-

RateFactor” lead to the best performing constellations so 

that no general statement for the choice of this parameters 

can be made. 

The results of the best performing networks are illustrated 

in Figure 6 for all test datasets. Furthermore, the mean 

AUC over all three datasets is displayed by the violet col-

oured bars. It can be seen that the classification results of 

all networks lead to much higher AUCs than the AUC 

achieved with the standard active signal processing repre-

sented by the “Contact SNR”. This means that the hand-

crafted feature based classification with the FNN as well 

as the CNNs outperform the standard signal processing 

significantly. On closer inspection it can be seen that none 

of the classifiers performs best in all three datasets. It 

seems that all convolutional neural networks are overfitted 

to the first two training datasets since they perform simi-

larly good for the first two test datasets and worst for the 

third test dataset. The most likely explanation for this is the 

amount of training data in the third training dataset which 

is approximately five times less than in the two other train-

ing datasets. However, a high fluctuation of the perfor-

mances for the three test datasets does not appear with the 

hand-crafted feature based FNN. Another important out-

come of this evaluation can be concluded by comparing 

the results of the shallow CNN and the deep CNNs. The 

mean performance of all pre-trained deep CNNs is higher 

than that of the shallow CNN which indicates that the 

depth of the network has an influence on the performance.  

 
Figure 6: AUC values of the standard signal processing and all 

considered neural networks for each test dataset. 

Since the main focus of this work is on the false alarm 

reduction, a second criterion for assessing this is intro-
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duced. The FPR achieved by the different classification 

algorithms is compared to that obtained by the Contact 

SNR at a TPR of 0.9. As an example, the ROC curves 

displayed in Figure 5 show that using the Contact SNR an 

FPR of 0.23 can be achieved at a TPR of 0.9. With the 

FNN an FPR of only 0.05 can be achieved at the same TPR 

resulting in a false alarm reduction of 78% for dataset 

DTestE2. In Figure 7 the results of the false alarm reduction 

criterion are illustrated for all considered classification 

algorithms and test datasets. It can be seen that the 

classification with the FNN leads to an average false alarm 

reduction of 75%. Moreover, the classification with the 

shallow CNN reaches 58% whereas all deeper CNNs 

perform much better. Regarding this criterion, the best 

performance can be achieved with the VGG-19, with that 

on average only 18% of the false alarms remain. 

 
Figure 7: False Alarm Reduction at a true positive rate of 0.9 

for each test dataset and each considered classifier. 

5 Summary and Way Ahead 

In this paper, a classical machine learning technique based 

on hand-crafted features as well as pre-trained CNNs are 

investigated for classifying sonar targets. Even though the 

pre-trained CNNs are designed for classification in R-G-B 

images, the performance on the sonar data that only 

contain SNR levels is quite good. A comparison of the 

performance of the shallow CNN trained from scratch with 

that of the transfer learned deep CNNs demonstrates that 

the deeper networks perform better. Since some of the 

CNNs perform slightly better than the hand-crafted feature 

based FNN, it can be concluded that the hand-crafted 

features do not address all possible relevant information 

for distinguishing target contacts and false alarms.  

In future work on the one hand, the extraction of further 

suitable hand-crafted features should be considered. On 

the other hand, the combination of CNNs with hand-

crafted features should be analysed. This could either be 

done by combining the final feature map of a CNN with 

the hand-crafted features that are further used to train 

another FNN or by feeding the hand-crafted features as 

additional inputs, that are forwarded to the fully connected 

layer, into a CNN. Furthermore, a deep CNN should 

especially be designed for sonar data. 

Acknowledgement 

The authors want to thank ATLAS ELEKTRONIK GmbH 

as well as the Bundeswehr Technical Center for Ships and 

Naval Weapons, Maritime Technology and Research 

(WTD 71) for the support and funding of this research. 

References 

[1] M. Buß et al., Feature selection and classification for 

false alarm reduction on active diver detection sonar 

data, UACE 2017, pp. 569–576 (2017) 

[2] M. Buß et al., Hand-Crafted Feature Based 

Classification against Convolutional Neural 

Networks for False Alarm Reduction on Active Diver 

Detection Sonar Data, Oceans 2018, pp. 1-7 (2018) 

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, 

Imagenet classification with deep convolutional 

neural networks, NIPS 2012, pp. 1097–1105 (2012) 

[4] C. Szegedy et al., Going deeper with convolutions, 

CVPR 2015, pp. 1-9 (2015) 

[5] C. Szegedy et al., Rethinking the Inception Architec-

ture for Computer Vision, CVPR 2016, pp. 2818-

2826 (2016) 

[6] K. He et al., Deep Residual Learning for Image 

Recognition, CVPR 2016, pp. 770-778 (2016). 

[7] F. N. Iandola et al., SqueezeNet: AlexNet-level accu-

racy with 50x fewer parameters and <0.5MB model 

size (2016) 

[8] K. Simonyan and A. Zisserman, Very deep convolu-

tional networks for large-scale image recognition, 

ICLR 2015, (2015) 

[9] G. Cybenko, Approximation by Superpositions of a 

Sigmoidal Function, Mathematics of Control, Sig-

nals, and Systems 2, pp. 303-314 (1989) 


