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Abstract — Passive sonar is used to determine the presence of targets and classify the class of them. Generally, 

acoustic signals acquired from the passive sonar has been analysed manually by acoustic analysts. However, this 

approach depends on the personal abilities of acoustic analysts, which makes the analysis process hard and time 

consuming. To overcome such difficulties, an automatic method is needed for a fast and an accurate analysis. In this 

paper, we propose an automated tonal detection method which is based on deep learning.  The deep neural network is 

adopted to effectively differentiating between tonal lines and environmental noises. This approach benefits from 

suppressing noise by picking tonal lines which contain frequency information. The test results showed that the 

proposed method can be expected to be utilized to develop automatic sonar signal analysis. 

1 Introduction  

Due to the severe attenuation of radio frequency and 

optical signals under the water, sonar (Sound Navigation 

and Ranging) is widely used to navigate, communicate 

with or detect objects on or under the surface of the 

water. Sonar systems record the sound waves using 

hydrophone and process them for detection, location, and 

classification of targets [1]. Two types (active and 

passive) of sonar systems are used; however, most of 

military systems use passive sonar systems for target 

detection/classification. Figure 1 depicts the brief flow of 

target classification process using passive sonar system. 

For the spectrogram analysis, LOFAR (Low Frequency 

Analysis and Recording) and DEMON (DEModulation 

Of Noise) are main tools, which utilize sonar signals, to 

detect the target. DEMON is for narrowband analysis that 

estimates the propeller characteristics such as number of 

shafts, shaft rotation frequency, and blade rate [2]. On the 

other hand, LOFAR provides broadband characteristics 

including noise vibration of the target machinery [3]. In 

any case, detecting tonal lines in time-frequency 

representation (spectrogram including LOFARgram and 

DEMONgram) is the base step for the target detection.  

Generally, the detection of targets using spectrogram 

has been conducted manually by acoustic analysts. 

However, the manual approach is time-consuming and 

depends on the personal abilities of acoustic analysts. To 

overcome such difficulties, an automated method that can 

support analysts by processing sonar signals rapid and 

accurate is needed. However, automated signal analysis 

of spectrogram is known as a challenging problem due to 

severe environmental noises and frequency components 

related to a speed of ships. 

In this paper, we propose a tonal detection method for 

automatic spectrogram analysis based on deep learning 

which has gained increasing attention for pattern 

recognition recently.  Since tonal lines in spectrogram 

can be considered as a certain kind of patterns, the deep 

neural network is adopted to effectively differentiating 

between tonal lines and environmental noises. Especially, 

we focused on convolutional neural networks (CNN).  

The test results showed that the proposed method can be 

expected to be utilized to develop automatic sonar signal 

analysis. 

The remainder of this paper is organized as follows: 

Section 2 describes the proposed method; the test results 

of the proposed method are presented in Section 3; and 

finally the conclusions are drawn in Section 4. 

2 Method  

Figure 2 presents overall procedure of our training of 

convolutional network for the tonal line detection. We 

used simulator and related parameters to create 

train/validation data set for CNN. From the sonar 

simulated wave signals, LOFARgrams were generated 

and related ground truth images were generated using 

simulation scenario parameters. Furthermore, the 

generated dataset was augmented and a certain portion of 

it was used to train the CNN. Finally, the trained CNN 

was validated using remaining dataset. 

2.1 Simulator and Parameters 
To generate the dataset for train/validation, we made a 

simulator which can output sonar wave signals from a 

scenario. The controllable parameters for a scenario 

include environmental noises, target/own-ship parameters 

(non-speed related components(NSRC) / speed related 

components(SRC)/trajectory/speed/etc.), and sensor 

configurations. 

For the simplicity of train dataset creation, we used 

one single target which does not have any moving 

Fig. 1. Target classification process using passive sonar system. 
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trajectory. Only NSRC (including stability control 

parameter) was used to generate radiated target noises. It 

benefits from setting frequency consistent along the 

simulation time. We can make ground truth data easily 

without the consideration of SRC and Doppler Effect. We 

randomly set 10 frequencies between 30~200Hz per a 

ten-minute scenario and 312 scenarios were prepared for 

the train/validation data creation. 

2.2 LOFARgram/Ground Truth and Data 
augmentation 

The simulator generates ten one-minute wave files per a 

scenario. Using those ten wave files, we created one 

LOFARgram. For the LOFARgram creation, S3PM was 

adopted and window size and gap size were 17 and 3, 

respectively. The resolution of LOFARgram was 0.5Hz 

and integration time was two seconds. Furthermore, we 

made ground truth data corresponding each of 

LOFARgram. Each ground truth data has exactly same 

size of LOFARgram and consists of ten frequency 

straight-lines since we had chosen 10 random frequencies 

in the scenario creation step. Those lines were drawn 

using frequency data of the corresponding scenario. 

We needed an enormous train dataset to avoid 

overfitting of CNN. The common minimum number of 

training data is order of 1,000. Since we only had 312 

scenarios and they did not include SRC noises, we had to 

augment the dataset. 

For the data augmentation, we utilized Gaussian 

probability density function written below: 
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where μ and σ represent mean and standard deviation, 

respectively. We could calculate the frequency-shift 

values at each time position (row index) in a 

LOFARgram utilizing the Gaussian probability density 

function. The frequency-shift function f(x) is defined as: 

𝑓(𝑥) = 𝑑 ∗ 𝑚 ∗ 𝑔(𝑥) + ms ,                                     (2) 

where d ∈ {-1, 1}, m=[20, 40], and ms=[-10, 10], 

respectively. Every row of LOFARgram was shifted by 

the output value of frequency-shift function and the holes 

were filled by sampling environmental noise area. All 

parameters were selected randomly except μ (0) and σ (1) 

to give some effects of target’s movement. By using data 

augmentation, we made total 6,240 LOFARgarm-Ground 

Truth pairs. 

2.3 CNN Train/Validation 

To differentiate between tonal lines and environmental 

noises, CNN is adopted. To be more precise, we adopted 

U-Net which is fully convolutional network for semantic 

segmentation [4]. U-Net is widely used for image-to-

image translation. In the case of tonal line detection, it 

can be considered as a problem of LOFARgram-to-

frequency map translation. Therefore, U-Net is one of the 

most powerful candidates for the classifier of this 

problem. 

We separated dataset into two classes, train and 

validation datasets. 2,640 data were randomly drawn for 

the train dataset, and the others were used for the 

validation dataset. 

3 Test Results  

The CNN train/validation was processed in a workstation 

which has 4 GPUs (NVIDIA Titan XP – 12GB). For 

better classification results, low frequency regions 

(0~20Hz) were cropped out. To minimize the effect of 

data imbalance in training, LOFARgrams and ground 

truth data were cropped to include minimum area of 

environmental noises before training. Table 1 enumerates 

the test results related to detection accuracy and speed. 

One remarkable point is that some of tonal lines which 

are almost invisible to naked human eyes are recognized. 

Table 1. Test results. 

 Train data Validation data 

Precision 0.9959 0.9618 

Recall 0.9045 0.9206 

Prediction 

time (sec) 
0.3217 (10-minute LOFARgram) 

4 Conclusions 

The proposed method achieved very good performance 

on simulated dataset. The automated sonar tonal detection 

can help speed and accuracy of analysis for undersea 

defense since current classification method is based on 

manual analysis. Our future work includes trying other 

CNNs in good performance and validation task on real 

sonar data. 
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Fig. 2. Proposed procedure for tonal line detection. 


