

Research on Passive Detection Technology of Underwater Target Tone Based on Unmanned Underwater Vehicle

Speaker: Guangpu Zhang

Harbin Engineering University, Harbin, China

Background

UUV

13-15 May 2019 Stockholmsmässan, Sweden

Strong Flexibility

Low cost-effectiveness ratio

Easy to cluster

Tonal signals radiated from underwater vessels

Background

The tonal signals radiated from underwater vessels are of great significance for UUV sonar systems to detect the underwater objects.

Signal model & Problem

13-15 May 2019 Stockholmsmässan, Sweden

Signal model: Tonal target

Θ

Beamforming technique

Tone detection

Fig. 1. UUV sonar array signal reception schematic **Problem:**

 $\theta_h(n)$ denotes the DOA of tone and is usually fast time-varying in the UUV or target motion-case

the main beam direction deviates from the DOA of tonal target.

Signal model & Problem

13-15 May 2019 Stockholmsmässan, Sweden

Fig. 2 . Conventional broadband beamformer

Unable to detect tone

Proposed technique

Basic idea:

The main idea of this technique is to introduce the selftuning filtering characteristics of the adaptive line enhancer (ALE) into the broadband beamforming technique

Advantages:

The technique does not need to estimate the DOA of tone in advance and can adaptively form a real-time tracking beam pointed to the DOA of tonal target.

13-15 May 2019

Stockholmsmässan, Sweden

Proposed technique

W

Fig. 3. The proposed self-tracking beamformer block diagram

The fixed weight vector \mathbf{W}_{a} is chosen so as to eliminate signal of interest in $\overline{\Theta}$

(Convex optimization tools)

INAC algorithm

Minimize
$$\Longrightarrow \xi(\mathbf{W}) = E\left\{ \left| d(\mathbf{n}) - \mathbf{W}^H \mathbf{X}(n - \Delta) \right|^2 \right\} \implies \mathbf{W}$$

Simulations

Sensor number: M=20Subregion of interest: $\Theta=50^{\circ} - 130^{\circ}$ Target DOA varies from 75 to 120 over 15 seconds

The main-beam of the self-tracking beamformer can adaptively track the target DOA

Fig. 1 Beam pattern at target frequency bin versus time a Conventional beamformer (pointed to 100°) b Self-tracking beamformer

Simulations

Tonal signal of the target can be observed over the entire time range and the interferences as well as the broadband noise are suppressed efficiently

b

Fig. 2 *Time-frequency analysis of wideband beamformer output a* Conventional beamformer (pointed to100 $^{\circ}$) *b* Self-tracking beamformer

Conclusion

The proposed technique can adaptively form a real-time tracking beam pointed to the DOA of tonal target and avoids the beam pointing deviation due to UUV-platform swinging, the rotational motion of UUV, the fast maneuvering of target or UUV, etc.

