

Shallow and infinite water manoeuvring: Integration of Computational Fluid Dynamics (CFD) in the design process

François Pétillon, Hydrodynamics Engineer, Naval Group

- 1. Integration of CFD within design process
- 2. CFD based methods for manoeuvring performances evaluation
- 3. Validation of CFD methods Infinite water
- 4. Constrained and shallow water particularities

Undersea Defence Technology

1. Integration of CFD within design process

- 2. CFD based methods for manoeuvring performances evaluation
- 3. Validation of CFD methods Infinite water
- 4. Constrained and shallow water particularities

Undersea Defence Technology

#UDT2019

Integration of CFD within design process

Submarine manoeuvrability study deals with several topics :

- Operational capability
 - Turning capability
 - Diving capability
 - Controllability
- Navigation safety
 - Submarine behaviour in case of hydroplane failure or flooding
- Control surfaces and actuator design
 - Structural design to withstand hydrodynamic forces
 - Capacity of the actuators

Purpose of manoeuvrability studies are :

- External shape design
- Performances verifications
- Risk management

NAVAL

Integration of CFD within design process

Different tools can be used in hydrodynamics studies, in infinite depth or constrained water

- Preliminary tools

Computational Fluid Dynamics

• Free running physical model

Complementary tools

NAVAL

Integration of CFD within design process

NAVAL

Design for manoeuvring capabilities : standard design phase

🕩 #UDT2019

Stockholmsmässan, Sweden

Undersea Defence Technology

13-15 May 2019

- **1.** Integration of CFD within design process
- 2. CFD based methods for manoeuvring performances evaluation
- 3. Validation of CFD methods Infinite water
- 4. Constrained and shallow water particularities

CFD methods for submarine manoeuvrability

The calculation method was defined to be :

- Fully qualified against reference data
- Reliable
- Efficiently applicable to the design needs

The construction of the method was performed in 3 steps :

- 1. Definition of a calculation setup
- 2. Verification of setup convenience to the whole range of studied cases
- 3. Embedment of method into an automated process

Undersea Defence Technology

Stockholmsmässan, Sweden

13-15 May 2019

CFD methods for submarine manoeuvrability

NAVAL

Captive simulation modelling :

Undersea Defence Technology 13-15 May 2019

Stockholmsmässan, Sweden

2019

- Similar approach to captive model tests
- Steady state flow on submarine, in a set of various configuration
 - Straight course, drift, incidence, vertical and horizontal turns, rudders and hydroplanes angles
- Evaluation of the efforts on submarine and stock torque on hydroplanes

Free running simulation modelling :

- Simultaneous solving of hydrodynamic flow and submarine movement
- Reproduction of steady state trajectories of reference manoeuvres :
 - Turning with rudder angle
 - Vertical and horizontal dynamic stability (turning with 0° hydroplane angle)
 - Trim change

- **1.** Integration of CFD within design process
- 2. CFD based methods for manoeuvring performances evaluation
- 3. Validation of CFD methods Infinite water
- 4. Constrained and shallow water particularities

Undersea Defence Technology

#UDT2019

Validation of CFD methods : infinite water

Validation strategy : 2 types

- Sea trials records
- Model tests measurements

The origin of the reference validation result depends on the considered characteristics:

- For manoeuvring performances, the values determined from the submarines sea trials are considered
- For the evaluation of forces on rudders and linear manoeuvring coefficients, model scale captive model tests results are considered

NAVAL

Validation of CFD methods : infinite water

NAVAL

Validation synthesis of captive simulation

- Validation process includes 6 main submarines
- Comparison made between CFD results and validation cases shows a good agreement

Examples of comparisons :

Validation of CFD methods : infinite water

NAVAL

Validation synthesis of free running simulation

- Turning rate submerged with extreme rudder angle were computed for 3 submarines
- The comparison between CFD results and sea trials data gives an assessment of main manoeuvring characteristic (diameter of trajectory)
- Less than 5% difference is found

- **1.** Integration of CFD within design process
- 2. CFD based methods for manoeuvring performances evaluation
- 3. Validation of CFD methods Infinite water
- 4. Constrained and shallow water particularities

Undersea Defence Technology

Constrained and shallow water particularities

When navigating in constrained and shallow water, supplementary hydrodynamic efforts are to be taken into account. This may affect :

- Autopilot optimisation
- Safe operating envelope definition

To take into account shallow water specificities in submarine design :

- Model tests close to bottom can be made, but are difficult to realise and insufficient
- For submarine design, Naval Group developed a complementary set of computation methods:
 - Simplified method based on Boundary Element model, for parametric studies and optimisation on a wide range of situation
 - CFD calculation, for specific operational cases validation

Constrained and shallow water particularities

Flat sea bottom example : validation of simplified method VS CFD calculations

Comparison of Naval Group CFD with existing literature on submarines :

Conclusion

- The current process for submarine manoeuvrability assessment fully integrates CFD methods
- These CFD methods were developed and applied by Naval Group for the past decades, and validated by comparison with sea trials and model tests on several seagoing submarines
- Constrained and shallow water manoeuvrability can be handled more accurately through these methods
 - $\,\circ\,\,$ Allows reduction of navigation margins and optimisation of autopilot

THANK YOU FOR YOUR ATTENTION

NAVAL GROUP