

Numerical prediction of non-cavitation noise from marine propeller

Frédérique Chevalier, Hydro-acoustics Engineer, Naval Group

- 1. Introduction
- 2. Non-cavitation noise from marine propeller
- 3. Numerical approaches and results
- 4. Conclusions and perspectives

#UDT2019

- 1. Introduction
- 2. Non-cavitation noise from marine propeller
- 3. Numerical approaches and results
- 4. Conclusions and perspectives

★ #UDT2019

1. Introduction

Context

- It is always a necessity to assess and improve the radiated acoustic footprint of ships at the design stage
- At high speed, main noise contributions from hydrodynamic flow and propeller
- Evaluation and optimisation of the propeller radiated noise mainly achieved with high level propeller experiments in the Large Hydrodynamic Tunnel (GTH), a very specific facility of DGA Hydrodynamics
- Necessity to invest in numerical approaches to design ships with shorter delays

1. Introduction

Objectives:

- Set up numerical approaches to estimate the propeller main contributions to noise and to reduce the number of model tests
- Develop and adapt aeronautical models for marine applications
- Get numerical approaches complementary to model test in their capability to provide additional information not available in the tunnel experiments (seabed effect, etc.)
- **⇒** To design quieter propellers

- 1. Introduction
- 2. Non-cavitation noise from marine propeller
- 3. Numerical approaches and results
- 4. Conclusions and perspectives

★ #UDT2019

2. Non-cavitation noise from marine propeller

Propellers are designed in order to:

- Push away far enough cavitation inception
- Reduce noise contribution without cavitation

Main propeller direct noise contributions without cavitation:

⇒ Each of these contributions requires specific modelling approaches

#UDT2019

- 1. Introduction
- 2. Non-cavitation noise from marine propeller
- 3. Numerical approaches and results
- 4. Conclusions and perspectives

★ #UDT2019

Blade modes noise prediction:

• Improvement of a previous numerical approach [1]:

- Turbulent boundary layer parameters directly extracted from RANS simulations
- Several pressure spectrum models available (Chase [2], Rozenberg [3]...)
- Spatial evolution of the turbulent boundary layer parameters taken into account in the fluctuating pressure excitation [4]

Blade modes noise prediction:

- Validation of numerical results:
 - Specific test case considered: two projects of propeller with a close structural behavior generate a very different blade modes noise level measured at model scale
 - Turbulent boundary layer parameters calculations:
 - ⇒STAR-CCM+ & 3C3D results in good agreement

#UDT2019

Blade modes noise prediction:

- Validation of numerical results:
 - Specific test case considered: two projects of propeller with a close structural behavior generate a very different blade modes noise level measured at model scale
 - Turbulent boundary layer parameters calculations:
 - ⇒STAR-CCM+ & 3C3D results in good agreement
 - Vibration behavior calculations:
 - ⇒ Blade wetted modes calculated by code_aster & PERMAS in good agreement with measurements

Blade modes noise prediction:

- Validation of numerical results:
 - Blade modes noise calculations:
 - ⇒ Numerical approach enables to well reproduce the vibro-acoustic phenomenon

- Approach improvements:
 - Turbulent boundary layer excitation: test other models like Slama [5]
 - Excitation implementation in the vibro-acoustic response

Blade rates noise prediction:

• Improvement of an already available numerical approach [6]:

- ⇒ Enable to take into account free surface and installation effects
- Validation of numerical results on model measurements:
 - Noise level prediction for the first BR frequency close to the model measurements
 - Noise level underestimated for the other BR frequencies
- ⇒ Benchmark with other commercial software in process to keep improving predictions

Trailing edge noise prediction:

- Implemented models:
 - Far field radiated noise model: Howe [8], Amiet [9]
 - Parietal pressure spectrum model: TNO Blake [10], « Scaling law » [11]

Validation of numerical results:

- On NACA0012 into the air [12]:
- ⇒ Results in good agreement with measurements
- On blade into the water:
- ⇒ Experimental noise slope well predicted
- ⇒ Main noise contribution associated to the blade tip one

• Approach improvements:

- Use parietal pressure excitation extracted from CFD calculations
- Take trailing edge vibration into account
- Predict tip vortex noise

- 1. Introduction
- 2. Non-cavitation noise from marine propeller
- 3. Numerical approaches and results
- 4. Conclusions and perspectives

#UDT2019

4. Conclusions and perspectives

The developed numerical approaches give valuable results for the propeller design process

Some improvements remain to be included to get a more accurate noise prediction

Moreover, ongoing validation tests will bring useful data to refine these approaches

Implementation of these numerical approaches will enable:

- To predict the radiated noise from marine propellers before model tests
- To accelerate the design process of silent propellers within a numerical optimisation loop
- To design quieter propellers

References

- [1] F. Chevalier, B. Saussereau, E. Honoré, Numerical approach for propeller blade vibration noise prediction, MARNAV (2012)
- [2] D. M. Chase, The character of the turbulent wall pressure spectrum at subconvective wave numbers and a suggested comprehensive model, Journal of Sound and Vibration, 112 (1), p.125-147 (1987)
- [3] Y. Rozenberg, G. Robert, S. Moreau, Wall-Pressure Spectral Model Including the Adverse Pressure Gradient Effects, AIAA Journal Vol. 50, No. 10 (2012)
- [4] M. Berton, Modélisation de la réponse vibro-acoustique d'une structure excitée par une couche limite turbulente en présence d'un gradient de pression statique, PhD Thesis (2014)
- [5] M. Slama, Généralisation des modèles stochastiques de pression turbulente pariétale pour les études vibro-acoustiques via l'utilisation de simulations RANS, PhD Thesis (2017)
- [6] B. Saussereau, F. Chevalier, T. Tardif d'Hamonville, Innovative pod propulsive and noise performances assessment, SILENV project (2011)
- [7] M. Roger, Contrôle du bruit aérodynamique des machines tournantes axiales par modulation de pales. Acoustica 80 (1994)
- [8] M. S. Howe, Edge-source acoustic Green's function for an airfoil of arbitrary chord, with application to trailing-edge noise, Journal of Applied Mathematics, 54(1), 139-155, Oxford University Press (2001)
- [9] Roy K. Amiet, "Noise due to turbulent flow past a trailing edge", Journal of Sound and Vibration, 47(3), 387-393 (1976)
- [10] O. Stalnov, P. Chaitanya, P. F.Joseph, Towards a non-empirical trailing edge noise prediction model, Journal of Sound and Vibration, Volume 372, Pages 50-68 (2016)
- [11] S. Lee and A. Villaescusa, Comparison and Assessment of Recent Empirical Models for Turbulent Boundary Layer Wall Pressure Spectrum, AIAA 2017-3688 (2017)
- [12] T. F. Brooks, T. H. Hodgson, "Trailing edge noise prediction from measured surface pressures", Journal of Sound and Vibration, 78(1), 69-117 (1981)

