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Abstract — With the rise of artificial intelligence technology, many industries are looking for ways to integrate 

artificial intelligence into their products, including for safety-related or safety-critical systems.  Artificial intelligence 

is seen to be a useful tool to help eliminate or minimise human error, though comes with a variety of challenges in 

terms of safety.  This paper looks into adopting a hazard-centric approach built of five principles when developing 

machine learning software algorithms to formulate a safety argument for autonomous systems that use machine 

learning.

1 Introduction  

Artificial Intelligence (AI) including approaches such as 

Machine Learning (ML) is a trending topic as to how it can 

be integrated into safety-related and/or safety-critical 

systems. Hence it is required to consider how safety 

arguments for systems which exploit ML techniques and 

autonomous systems are made. A Dstl funded project led 

by Frazer-Nash Consultancy Ltd (Frazer-Nash) in 

partnership with Subject Matter Experts (SMEs) from 

across industry and academia, has developed a generic 

Safety Argument Structure for an Autonomous System 

that uses ML. Table 1 lists the industry and academia 

partners supporting the project. 

Table 1: Industrial and Academic Partners 

Partner Area of Specialism on the 

Project 

SeeByte Ltd Integration of Autonomy and AI 

on Maritime Platforms 

Bristol Robotics Laboratory Embodied Artificial Intelligence 

within Autonomous Air Systems 

Montvieux Ltd Artificial Intelligence and 

Machine Learning Techniques 

University of the West of 

England 

Artificial Intelligence and 

Machine Learning Techniques 

Ricardo Ltd Autonomous Systems 

University of Bristol Functional Verification and 

Validation for Safety 

University of York Safety and Autonomy 

The scope of the safety argument will be similar to 

that of a traditional product design safety case.  The 

following ML techniques are within the scope of the 

argument: supervised learning, unsupervised learning, 

reinforcement learning and deep learning. 

2 Hazard Centric and Principled 
Approach 

Adopting a hazard-centric approach allows for; a simpler 

safety argument immediately focusing on the 

underpinning hazard and is agnostic of the domain. This 

approach is supported by previous work undertaken by 

Dstl [1]. The principles of assurance of ML software 

(MLSW) are: 

 P1: Software safety requirements shall be defined 

to address the software contribution to system 

hazards. 

 P2: Software detailed design shall embody the 

intent of the software safety requirements. 

 P3: Software safety requirements shall be 

satisfied. 

 P4: Hazardous behaviour of the software shall be 

identified and mitigated. 

 P4+1: The confidence established in addressing 

the software safety principles shall be 

commensurate to the contribution of the software 

to system risk. 

2.1 Principle 1 

Identifying all hazards for an autonomous system that 

interfaces with the environment is challenging due to 

complexity and emergent behaviours, and also lack of 

specification. 

 In general, perception/interaction with the 

environment is required for an autonomous system. 

Identifying the complete range of scenarios may not be 

possible and hence it is not possible to identify all 

associated functional failures. To tackle this, a suggested 

approach is to use partial specifications.  

 For highly complex, high-authority software, it is 

possible that the design and implementation made to meet 

the individual requirements will interact which results in 

emergent behaviours from the interaction of all 

mailto:j.mccloskey@fnc.co.uk


UDT 2019                 Presentation/Panel 

 

implemented requirements. This behaviour may not be 

safe.  

2.2 Principle 2 

The hierarchical decomposition of safety requirements is 

difficult for MLSW because of the highly inter-dependent 

nature of the MLSW artefacts and the trial-and-error 

aspects of the MLSW development process.  

 The inter-related nature of requirements 

decomposition and design decisions results in a network 

relationship. Incremental justifications are required at 

every design step to take account of inter-dependencies. 

2.3 Principle 3 

The MLSW learning process is inductive and can 

introduce different levels of non-determinism and lack of 

interpretability. This restricts/prohibits the use of analysis 

techniques to verify claims that safety requirements are 

satisfied. If verification by testing is the only option, then 

a vast number of test cases may be required and even then, 

it is not possible to prove the requirement is met for all 

potential inputs.  

2.4 Principle 4 

In order to minimise unanticipated behaviours and 

implementation errors during the development process, for 

every design decision, it is necessary to understand the 

interdependencies of the design commitments to date. A 

network ontology to track the dependencies may be a 

useful method in doing so. It is also important to identify 

the potential limitations/weaknesses associated with the 

selected datasets, learning algorithms, selected models and 

evaluation criteria. 

2.5 Principle 4+1 

For classical software, design standards require increasing 

rigour of development and assurance for increasing levels 

of software criticality – this is achieved through the 

mechanism of Safety Integrity Levels or Design Assurance 

Levels. No such levels yet exit for MLSW and hence 

bespoke confidence arguments are required until such 

times that a consensus on good practice is established.  

3 Human Interaction with an 
Autonomous System 

A safety argument for an autonomous system will need to 

demonstrate that all reasonably foreseeable safety risks 

associated with human interaction with the system are 

identified and managed to acceptable levels. One potential 

method identified to tackle this is the use of System 

Theoretical Process Analysis (STPA). STPA treats the 

human as a control function within the overall autonomous 

system (for instances where the human can monitor and 

take over from the autonomy) and provides information on 

how safety constraints due to human error could be 

violated. 

Out-of-The-Loop Loss of Situational Awareness, 

presents a significant risk for the handover of control and 

the inability of an operator to regain effective control from 

the system to the operator.   This is aggravated by issues 

such as passive fatigue [3], reduced operator vigilance [4], 

[5] and distraction by a secondary activity [6], [7]. 

Leveson [8] stresses the requirement for a human 

controller to have a model of an automated system’s 

behaviour to enable effective interaction with the system. 

A safety argument for an autonomous system should 

demonstrate that the risks associated with divergence 

between the operator’s mental model of the system and the 

system design are appropriately managed. 
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