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Overview
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 Automation is set to bring benefits in efficiency, accuracy, and 

safety, but first we need to understand how to prove 

autonomous systems are safe to operate.

 The Defence Science and technology Laboratory (DSTL) 

commissioned this study, which Frazer-Nash led, with support 

from a team of academics and equipment manufacturers.

 The aim was to create a credible safety argument structure 

that can apply to autonomous systems of all types.
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Possible Underwater Autonomous System Applications

• Manoeuvring and 
navigation

• Platform 
management

• Protection 
systems (fire and 
flood)

Manned Platforms

• Mine Sweeping

• Unmanned ASW

• Intelligence 
gathering

• Situation 
awareness

Unmanned Platforms

• Untethered 
torpedoes

• Smart 
countermeasures

Weapons and CM

• Data triage, 
feature detection 
and analysis

• Contact tracking 
(radar, sonar, 
visual)

• Tactical support

Combat Systems

3Many of these applications are likely to need a robust safety argument
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Concepts - What is Autonomy?

 Autonomy is when a machine performs a task 

without human assistance.

 The task can be simple (e.g. turning the 

brightness down when it’s dark) or very 

complex (e.g. flying a UAV.)

 Simple autonomy can be achieved by a set of 

rules or behaviours

 Complex autonomy requires more complex 

approaches, e.g. machine learning.

 A platform can have a ‘level’ of autonomy

 In this project we are concentrating on the  

more complex systems that cannot be covered 

by a simple rule set.
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This is the area of focus 

for this project
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Concepts - What is AI?

 AI is Complex automation

 Artificial intelligence has many definitions:

 Here we define it as a computer capable of 

making complex decisions and acting on them 

without input from a human.

 Systems can be trained or learning

 Trained systems have fixed behaviour after 

leaving the factory.

 Learning systems update their behaviour either 

during or between use.

 Field is rapidly developing.

5



© Frazer-Nash Consultancy Ltd. All rights reserved. 

Concepts - What is Safety?

 Safety cases demonstrate that a system is 

safe to operate in a certain way because of a 

number of provable factors.

 Depending on the impact of failure, proof can 

be demanding and required failure rates to be 

extremely low.

 It is difficult to take human performance 

uncertainty into account.

 A human is a natural analogue to a complex AI 

system.

 We have used experience of civil aviation and 

road vehicle safety cases to consider these 

issues and the interaction between AI and the 

human operator
6

Claim

Construction of a traditional safety case
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Problems - What are the main challenges with AI and Autonomy?

 Safety has no obvious way of handling AI:

 Too opaque to consider as software.

 Too unpredictable to consider as a component.

 Too unaware to consider as a human.

 Safety

 Rigorous and provable

 Very detailed requirements

 AI

 Lack of context

 High failure rate (in safety context)

 Very ‘black box’, even for developers

 Tested rather than proven.

 Designers tend to not think of safety first.
7
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Problems - Training & Performance Measurement

 A safety case will state that system failures 

occur at levels such as 10-5 – 10-9 (per hour) 

for high integrity systems.

 This covers all operational environments.

 A good AI program will demonstrate >95% 

accuracy on an industry standard challenge:

 Probably worse in real operation

 Failure rate is at least 1000 times higher than a 

typical high integrity system at 99% accuracy.

 AI performance measurement is done on a 

particular set of data.

 Performance outside of set is assumed

 Does the set cover all expected scenarios?

8
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Problems - Example: Access Control

 An access control system has two functions:

1. Allow access to a few specific people;

2. Deny everyone else access. 

 If I have 1000 people, 10 of whom have access, 

the system can achieve 99.9% accuracy by 

denying everyone access

 Not good at function 1 though!

 For AI systems, performance is always a trade-off 

– no system is perfect!

 You either incorrectly:

 Deny some people access (false negative)

 Grant some people access (false positive)

 You choose which (and to what extent) based on 

the outcome of each error. 9
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Problems - State Space

 Safety cases often demonstrate the outcome 

of all possible system states.

 E.g. two levers with a set number of positions

 The total number of states can grow quickly if 

the number of dimensions (e.g. levers) and 

allowable states (e.g. lever position) increases.

 E.g. 4 levers with 3 positions = 81 states

 The safety case can define what happens in 

each of these states and prove that it is safe.

 How does this apply in AI systems?
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 A typical image is made of pixels which have a value 

between 0 and 255 (3 values for RGB).

 For 4 pixels, the state space is 256*256*256*256 = 4.3 

billion.

 Input space in AI can often be effectively infinite:

 E.g. 512 x 512 pixel RGB image

 Each pixel has 256*256*256 = 16.7M possible values

 (16.7M)(512*512) is a <MATH ERROR>, or “very big number”

 How can we demonstrate adequate training / testing 

coverage in a space that large?

 …but a lot of the input space is incoherent noise

 How can we say that our system has enough experience?

Problems - Data Coverage

11
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Problems - Data Coverage

 Instead of pure coverage of possible states, can we instead think of concepts and challenges?

 What can my system experience?

 Objects (scale, position, number, orientation, occlusion)

 Lighting (brightness, contrast, colour, saturation, reflections)

 Noise (sensor, dirt)

 Motion (blurring, shearing, jitter)

 Weather (rain, sun, fog)

 Background

 This space is much smaller and more understandable

 Still difficult to be exhaustive in a category, but can demonstrate resilience.

 Could industries or regulators assemble standard training / testing / validation sets?

12



© Frazer-Nash Consultancy Ltd. All rights reserved. 

Problems - Understanding AI

 In Safety, all parameters / Line-of-code can be traced back to a high level 

requirement.

 In a deep learning model, can we say with any confidence what a single 

parameter does?

 Situation is improving – ongoing  research into explaining and visualising why the 

AI has made a decision:

13
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Problems - Understanding AI

 These ‘understanding’ techniques aren’t universal, 

and are focussed on imagery / classifiers at the 

moment

 They often require specific model types and need to 

be specified at the requirement stage.

 Different ways of explaining:

 By reason: I think the image is a dog because of the 

nose and ears

 By analogy: I think the image is a dog because it looks 

like this other image of a dog

 Understanding builds trust in the system and allows 

us to improve safety integrity
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Our Approach – The Safety Argument Scope

The approach aimed to:

 Facilitate discussion on existing AI safety problems

 Cover a range of scenarios

 Be realistic, solvable, and applicable to wider 

systems

Starting assumptions around the system:

 A fully autonomous system

 A single contained embedded system

 A single unit/agent/platform

 Humans in proximity of the operation

 A trained system, not a learning one

 An environment which is sufficiently complex to 

require AI
15



© Frazer-Nash Consultancy Ltd. All rights reserved. 

Our Approach – Conclusions
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•Software safety requirements shall be defined to 
address the software contribution to system hazards

Principle 1

•The software detailed design shall embody the intent of 
the software safety requirements

Principle 2

•Software safety requirements shall be satisfied

Principle 3

•Hazardous behaviour of the software shall be identified 
and mitigated

Principle 4

•The confidence established in addressing the software 
safety principles shall be commensurate to the 
contribution of the software to system risk

Principle 4+1

5 Safety Principles
9 Safety Templates

(for producing evidence) 

Template1

System is Safe

Template 2 

System Level Hazards are Identified

Template 3

Machine Learning Software 

Contribution to Hazards are Managed

Template 4 

Concern Safety Requirements are 

Identified

Template 5 

Development Hazards are Managed

Template 6 

Concern Safety Requirements are 

Satisfied

Template 7 

Tests are Sufficient

Template 8 

Analyses are Sufficient

Template 9 

Reviews are Sufficient
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Concluding Thoughts

 Structure has been developed 

 Planning to publish output for use by government & industry

 Looking for autonomy projects to demonstrate approach

 A number of interesting challenges for the future, not least:

 Large volumes of data are required. Can we be smarter about generating this data?

 Need to improve understanding of AI to enable higher integrity applications.

 Focus on effective AI / Human Teaming for tasks with higher novelty or safety criticality.

 Enablers for AI in safety critical applications

 Use of AI as an assistive technology, with fall back to traditional software to enforce the 
safety envelope (Control-monitor architecture).

 Use of multiple and diverse ML software in a voting system – how to do quickly and 
consistently

 Consideration of AI and ML as part of the operational safety case in place of the human 
operator
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Thank you, any questions?

Chris Carter

Email: c.carter@fnc.co.uk

Tel: 01306 88 50 50

www.fnc.co.uk
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