How can ELINT deal with modern radar

Andrew Owen ELINT/RESM Business Development Manager

■ What is ELINT?

■ The Target

Are Radar collection receivers fit for purpose?

How can ELINT deal with modern radar

ELINT is NOT!

A Tactical Asset tasked by Operational Commander

■ For Force protection/Situation awareness

Dependent on an on-board library

Providing an Emitter location/Line of Bearing

- An Intelligence gathering Strategic Asset
- Radar Intelligence collection
- Focused, ELINT targets a specific Set of Radars
- Aiming is to discover the capability of the target
- Providing technical parametric data
- Operator/analyst knowledge of the target is key

Modern Radar

- Electronic Scanning Arrays
- Solid State GaN technology
- Frequency Agile
- Wide Band
- Framed signals/Very Complex Modulation
- Almost impossible to seduce/distract effectively
- Very difficult/impossible to fingerprint
- Potential use of extended RF ranges

Target examples

Typical radar collection receivers

Receiver Type	Advantages	Disadvantages
Channelized Receiver	Wide bandwidth and/or narrow bandwidth	Poor sensitivity for wide bandwidth
Wideband crystal video receiver	Simple, inexpensive, instantaneous High Probability of intercept (POI) in frequency range	No frequency resolution Poor sensitivity Poor simultaneous signal
Tuned RF crystal video receiver	Simple Frequency measurement Higher sensitivity than wideband	Slow response time Poor POI
Narrow Band Scanning super heterodyne receiver	High sensitivity Good frequency resolution No simultaneous signals problem	Slow Response Poor POI Poor against frequency agility
Wideband super heterodyne receiver	Better response time Better POI	Spurious signals maybe generated Poorer sensitivity

7

POI Definition

'The probability of time coincidence of two or more parametric window functions such as scanning antennas, sweeping or stepping receivers and frequency agile emitters'.

Who actually defines POI?

The manufacturer

Wideband Receiver – 100% POI

- Platform independent automatic wideband receiver continuously staring to monitor the radar spectrum
- Operating between 2.0 18.0 GHz can be extended down to 0.5 GHz and up to 40 GHz
- Outputs a Pulse Descriptor Word (PDW) every time a radar pulse is <u>detected</u>
- Frequency range is normally separated into individual frequency blocks using 1 GHz filters
- Individual filters are normally selectable and switched off in the event of strong interference, radar signals are rejected across the whole filter bandwidth

What about sensitivity?

Sensitivity Impact on Detection Range

Against typical COTS navigation radar (mechanical oscillator)

Sensitivity -61 dBm (Good for wideband radar collection receiver)

Transmit Power	12 kW ##	Sensitivity	-61.01 dBm	Receiver NF	14 dB
Antenna Gain	20 dBi ##	Maximum Range	98.60 km	Antenna Gain	0 dBi
Transmit Frequency	9.4 GHz 0			Receiver BW	500 MHz
				SNR	12 dB

Against modern solid state COTS navigation radar (high power)

Sensitivity -61 dBm (Good for wideband radar collection receiver)

Transmit Power	0.5 kW 🛛 🗰	Sensitivity	-61.01 dBm	Receiver NF	14 dB
Antenna Gain	20 dBi ##	Maximum Range	20.13 km	Antenna Gain	0 dBi
Transmit Frequency	9.4 GHz 0			Receiver BW	500 MHz
				SNR	12 dB

Against modern solid state COTS navigation radar (high power)

Sensitivity -61 dBm (Good for wideband radar collection receiver)

Transmit Power	0.1 kW ##	Sensitivity	-61.01 dBm	Receiver NF	14 dB
Antenna Gain	20 dBi 🗰	Maximum Range	9.00 km	Antenna Gain	0 dBi
Transmit Frequency	9.4 GHz)		Receiver BW	500 MHz
				SNR	12 dB

Against modern solid state COTS navigation radar (high power)

Sensitivity -55 dBm (Typical for wideband radar collection receiver)

Transmit Power	0.1 kW ##	Sensitivity	-55.01 dBm	Receiver NF	14 dB
Antenna Gain	20 dBi ##	Maximum Range	4.51 km	Antenna Gain	0 dBi
Transmit Frequency	9.4 GHz 0			Receiver BW	500 MHz
				SNR	18 dB

Hard Facts 100% POI but.....

Wideband receivers:

- Cannot deal with the modern radar environment because of the technology approach
- Are not sensitive enough
- Do not have enough dynamic range to deal with high power radars
- Struggle with Pulse-on Pulse on CW situations

So how can ELINT can deal with modern radar

Bandwidth has always been King!

Unfortunately Physics is the enemy!

Sensitivity

Bandwidth

Against a modern radar sensitivity IS the most important parameter

	STATE	FREQUENCY		SPAN	ATTEN	UATION	ANTENN		s s	SOURCE	REC	STORAGE	
	FFM 9	400.000 000	MHz 🗘	500 000 MHz -	MAN	IUAL	SHF				- <u>-</u> -	GX470	▼ [] => F
R	un Stop	MHz 🔹 9500.000	MHz 🔹	500.000 WINZ +	0 dB	10 s 🗘	U/SHF2 (X46)	- 6 200	All active	e ACHs	00:00	85.3	
s	ettings				r ×	🔡 IF Pan	norama						
	IF Panorama				₽×	ACH 1	ACH 2	🖲 ACH 3 🔵	ACH 4				
		Spectru	m										
	Display Mode	Max Hold			•	-20 0 dBm							
9	Adapa Tima			1 mc	-	20.0 0011							
	meas. Time			1 115	-								
	Meas. Mode	CONT			•	-40.0 dBm							
chini		Auto Pulse D	etector —										
Ē	Active												
	Detector Thresho	ld 🗌		Δ +10 dB	+	-60.0 dBm							
	Detector Time			500 ms	•								
		Polychro	me			-80.0 dBm							
	Active												
	100% time			500 ms			and the second second	a da constante a conditiona			a ann a' a sao		KAA IM
	Observation Time			5000 ms	-	PAP Plat	et de la companya de	MANDAL PROPERTY	ST-SEIKUVAKIRARI	le de la competencia de	anciente de la constante de la	estata and a second second second	Not a manufacture and a second
		Display			\sim	0150.0							
			y			2010.04-34	UU IVIHZ 920	00.000			9300.00	00	
	Visualization		Integrated		9	2019-04-21	15:20:41						
			in the second the										

Signal separation in frequency and time domain Quasi-matched filtering

Signal separation before analysis, significantly reducing pulse on pulse problems.

Manageable data

- I Q data impractical for large files (TBs)
- Dramatic data reduction is essential up to 75% could be noise
- A bursted data format containing the metadata but also the frequency, phase and IQ data
- Must be coherent preserving instantaneous intrapulse phase, amplitude and frequency
- Essential if radar signals use intrapulse modulation (FMOP, PMOP etc.)

Other requirements for an ELINT system

■ Wide frequency range to cover all radar functions (including legacy systems)

Digital system for data manipulation

High collection quality

Conclusion

Radar technology has a significant lead over EW/ELINT technologies

- Industry needs to understand the Application and build fit for purpose solutions
- Current Wideband systems can not deal with modern radars
- Bandwidth is no longer the primary parameter
- Sensitivity is the new King
- ELINT is NOT easy

Questions?

