The Case for Machine Learning

Prof Paul Brittan L3 Chief Scientific Officer

13th May 2019

What is Machine Learning? Definition of Terms

Big Data

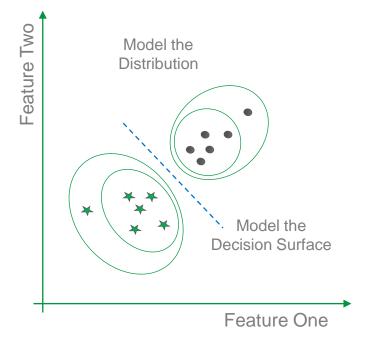
Volumes of data that exceed memory and/or traditional processing techniques

Data Science

Modelling trends and clusters (classes) within big data

Machine Learning

Use of models to classify or predict trends or classes within data


Artificial Intelligence

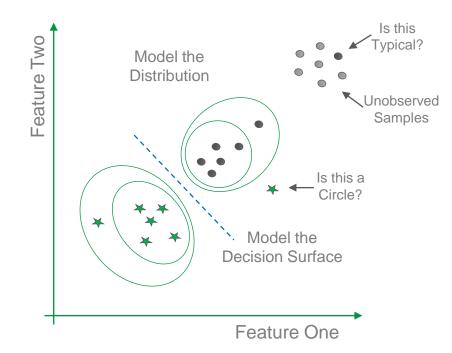
Use of Machine Learning techniques to automatically react to a situation

Machine Learning

Surprisingly Simple...

Applications:

- Identify Clusters
- Separate to Classify (Label)
- Anomaly Detection
- Assign Probabilities and Confidence


And with a little tweaking:

• Prediction

Machine Learning

The Challenges...

Challenges:

- Outliers
- Dependencies
- Chaotic and/or Noisy systems
 - Non-linear data
 - Hidden variables
 - Perturbation
- Too little (sparse) data
- Too much (big) data
- Curse of Dimensionality
- Regularisation and Quantisation
- Training Bias

Machine Learning A long history

	First Established	Example	Advantages	Disadvantages
Bayesians	1763	Refinement Hypothesis and a- priori Knowledge	Measurement of Uncertainty	Need for Good Data Coverage
Connectionists	1951 2006	Neural Networks Deep Learning	Automatic Feature Extraction	Accountability
Analogises	1967 1995	Nearest Neighbour Support Vector Machines	Good out-of-sample Generalization	Model Selection
Symbolists	1970s	Inverse Deduction Rule Based	Potentially Short Learning	Brittleness & Scalability
Evolutionists	1992	Genetic Algorithms	Avoid Local Minima Adapt to the Unknown	Dependency on Encoding

The unspoken truth: There are few new ideas in Machine Learning!

The Case for Machine Learning

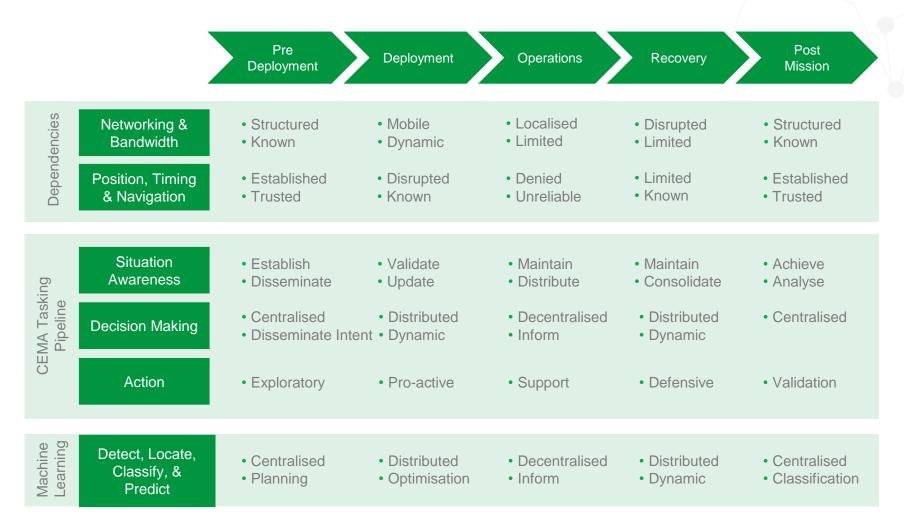
On a CEMA Battlefield

Operating Scenario:

- Autonomous CEMA Adversary Well equipped and devolved chains of command
- Contested and/or Congested Environment
 - Loss of Strategic Backhaul
 - Disrupted Tactical Communications
 - Loss of Position, Timing, and Navigation
- Information Overload from Big Data Volume, velocity, diversity, and sparsity

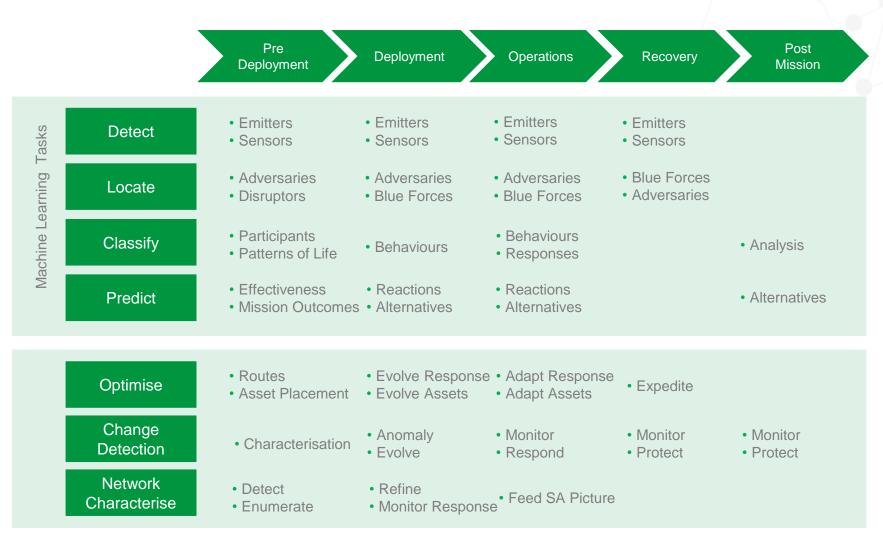
Operational Needs:

- Automated Decision Support **Reduced Cognitive Burned**
- Utilise increased Situational Awareness Every soldier and platform is a Sensor
- Legal, Accountable, and Proportional Actions Driven by Rules of Engagement
- Threat Signal Prioritisation Automate or support faster decision making


Benefits of Machine Learning:

- Distributed Analytics To support Situation Awareness
- Authorised Autonomous Decision Making
- Decentralised Decision Support To support loss of communications
- To expedite decisions
 - **Trusted Edge based Computing** To support Machine Learning

Operational Timeline


Evolving CEMA Environment

Operational Timeline

Potential Application Areas for Machine Learning

The Case for Machine Learning

On a CEMA Battlefield

Any Questions?

Operating Scenario:

- Autonomous CEMA Adversary
 Well equipped and devolved chains of command
- Contested and/or Congested Environment
 - Loss of Strategic Backhaul
 - Disrupted Tactical Communications
 - Loss of Position, Timing, and Navigation
- Information Overload from Big Data Volume, velocity, diversity, and sparsity

Operational Needs:

- Automated Decision Support
 Reduced Cognitive Burned
- Utilise increased Situational Awareness Every soldier and platform is a Sensor
- Legal, Accountable, and Proportional Actions
 Driven by Rules of Engagement
- Threat Signal Prioritisation
 Automate or support faster decision making

