

Passive Radar Sensor Technology

Raytheon Deutschland GmbH

Sebastiaan Verton 15 May 2019

Copyright © 2019 Raytheon Company. All rights reserved.

Background Raytheon Deutschland

Raytheon

Space and Airborne Systems

Raytheon Deutschland is the Design Authority for the **passive** working **Emitter Location** System (ELS) deployed with German & Italian Air Force ECR Tornado. We designed, developed and built a **Digital Receiver** to replace the analog ECR ELS – <u>free of ITAR constraints</u>!

Raytheon Space and Airborne Systems

Passive Sensing Technology

Basic design considerations

- Two sided system with identical hardware
- Use of interferometer antennas
- 5 channel input
- Standard size modules and COTS hardware where possible
- Easy to adapt system design for different applications
- "Software Defined Receiver" to allow flexibility

Passive sensor hardware modules

Raytheon

Space and Airborne Systems

Passive sensor concept

Scalable digital ELINT- / ESM-System for passive radar monitoring

- Data collection
- Tactical-operational missions

IF coverage:	UHF – Ku Band (optional Ka)
IF channels:	Application-specific
Excellent sensitivity:	Detection of low power emitters outside hostile threats

Flexible (Interferometer-) antenna configuration

High precise direction finding system, fast geolocation with "Multiship Ranging" (datalink required).

The system provides fast target information as well as precise EOB information in a highly condensed spectrum.

Mission range depends on:

- Antenna elevation (radar horizon)
- Emitter power
- Emitter frequency

Utilization of existing platform infrastructure (INS, SatCom, etc.) where possible

Proven Technology based on over 25 years of emitter location experience

Advanced Radar Detection System (ARDS)

Performance Figures

5/29/2019 7

General ARDS performance figures – 1

- Digital ELINT / ESM System
 - ELINT-Sensor to collect basic emitter data / information
 - ESM-System for tactical-operational use of collected data
- Strategic, tactical and technical ELINT
- Signal classification, extended operational picture with radar emitters
 - Detection of LPI, frequency agile signals, finger-printing, auto-correlation, etc.
- Assignment of other systems / effectors (e.g. jammers or weapons)
 - Multi-Ship-Ranging based on data link (e.g. L16) as contribution for a Joint ISR
- "Software Defined Receiver" Technology
 - Free definable data-products (e.g. formats, interfaces)
 - Data provisioning as (additional) layer for a comprehensive operational picture

General ARDS performance figures – 2

- Free antenna design
 - Depending on frequencies to be covered
 - Integration down-conversion into antenna housing
- Platform independent design (manned, unmanned)
- In-Flight-Update of libraries, operation modes, etc.
 - Firm- / Software-Update during flight (increase overall performance during long-term missions)
- Very high degree of automation
 - Autonomous dwell through entire spectrum as long as no other commands are given
 → Return to standard search pattern after certain idle time
- Support of (live-) display and recording for post mission analysis and generation of threat libraries
- Recording includes, but is not limited to
 - I/Q data, pulses, beams, systems

Further use of recorded data

- Designed as system to be operated with no man in the loop
- Collection of data always active
 - Display of mission critical / required information
 - Recording of all other collected information
- Download via datalink or ground station (post mission)
 - Change of solid state disc
- Detailed post mission data analysis
 - Generation of libraries, update to known threats, etc.

ARDS – Flight test September 2018

Raytheon

Space and Airborne Systems

Flight test results

- Aerodynamics / Mechanics
 - All simulations could be proven during flight
 - Stable design of the pod with mission payload
 - Effective "In-Flight-Calibration" of the pod-position relative to carrier

Communication

- Stable use of assigned datalink capacity
- Reliable transmission of information and display on ground station

Performance

- Exact geo-location and identification of emitters
- Very precise detection and analysis of emitter parameters (frequency, PRI, pulse width)
- Very high sensitivity under real world conditions as predicted from lab tests
- Very low error rate

Proven performance with existing hardware

Passive sensor applications

Raytheon Space and Airborne Systems

Jets

- Fighter jet
 - Use in a podded version or "internal"
 - High degree of automation, but recommendation for twin-seater
- Business Jet
 - Use with fuselage conformal antenna assembly and internal installation of analysis LRUs

Unmanned Systems

- HALE / MALE UAS with internal or podded antenna configuration
- "Distributed System" with centralized tasking
- Naval missions
- Datalink use fully implemented

ARDS – "Ready to fly"

Yes, we scan!

