

Agenda

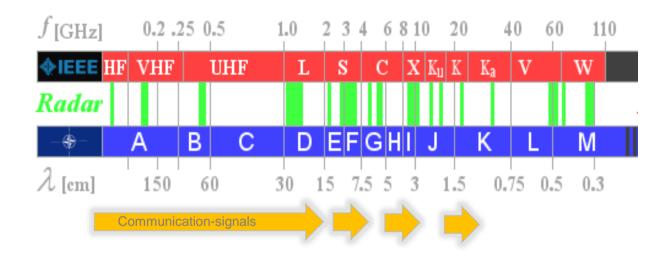
00 Motivation

01 Challenges in a changing world

02 Resulting problem statement

03 Technology approaches to solve it

04 Conclusion



00 Motivation

- GET HOME SAFE
- Enhanced survivability for platforms operating in todays contested and congested EMS environments is key
- Todays EMS for Radar EW is a complex, very dense and high dynamic mixture of different signal types, from military and civil sources with different signal strength and distributed over a wide frequency range.

The COMs Challenge

Statement:

The EMS is a complex mixture of different signal types.

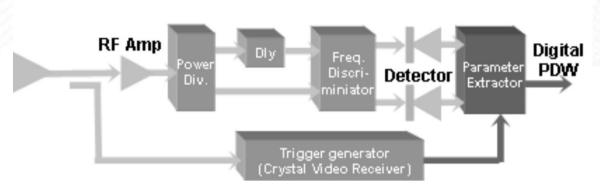
Task: What is the signal of interest?

The COTS/MOTS Challenge

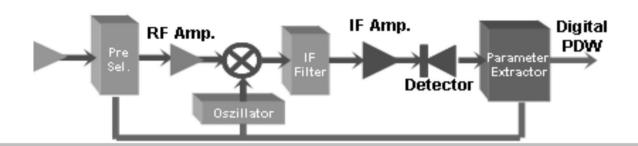
Statement: The technology cycles are going faster and faster.

Task: Provide innovative, flexible, modular MOTS product in a short time to the market

The false alarm Challenge


Statement: False alarms are increasing crew workload and reduce confidence towards the equipment

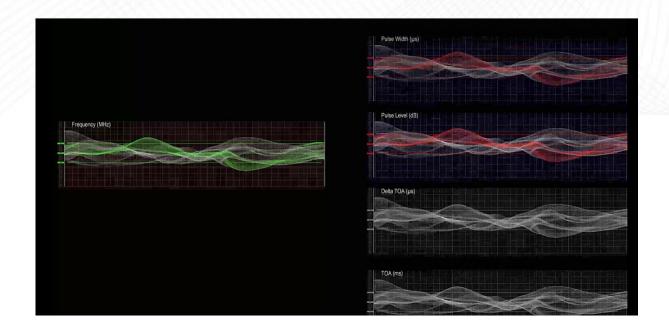
<u>Task</u>: Reduce false alarms for a reliable classification.



The receiver Challenge

IFM Receiver

Superhet Receiver


Statement: Some receivers architectures have difficulties to handle e.g. HPRF and LPRF emitters, pulse + CW

Task: Receiver required

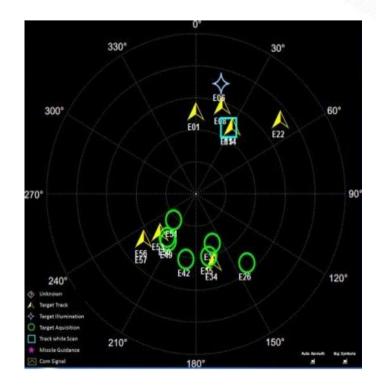
- Highest sensitivity
- High dynamic
- High instantaneous bandwidth
- Multi signal capability

The data Challenge

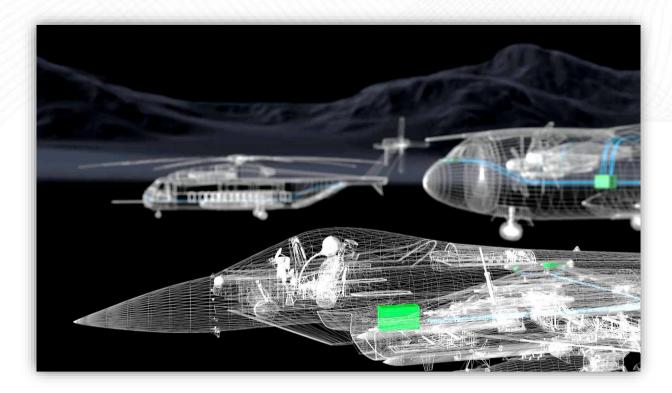
Statement: The amount of data is massively increasing.

Task: Provide support tools for the operator to handle the data for the relevant information.

02 Resulting problem statement

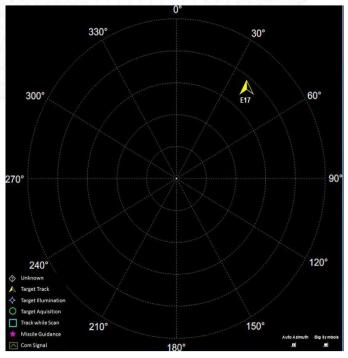

We need modular EW products for our customers demand by providing

- COTS, MOTS solution
- Lowest false alarm rate
- Full digital solution
- Solution for big data handling
- Short time to market

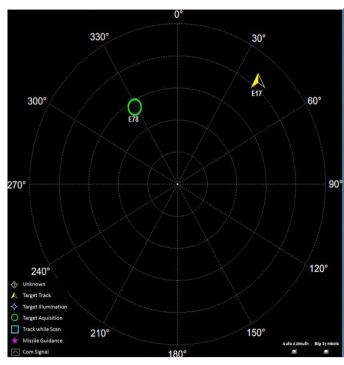

Multisignal capability: Handling of CW, Pulse, and COMS signals

Label	Mode ID	Track Duration	Confidence	Function	RF Type	RF Levels	PRI Mean	
E01	1	192.16 s	100.0 %	П	Stable	1	1450 µs	
E08	9	377.36 s	100.0 %	П	Stable	1	265 µs	
E13	14	372.56 s	100.0 %	TWS	Switch	6	35 µs	¥
E14	15	365.41 s	100.0 %	Π	Switch	7	43 µs	v
E33	67	353.53 s	100.0 %	TA	Jump	5	833 µs	
E26	60	358.31 s	100.0 %	TA	Jump	2	4 µs	×
E34	68	353.50 s	100.0 %	π	Jitter	1	330 µs	¥
E35	69	156.64 s	100.0 %	TA	Stable	1	1966 µs	
E42	76	339.24 s	100.0 %	TA	Stable	1	1027 µs	
E49	83	336.96 s	100.0 %	TA	Stable	1	1027 µs	
E22	23	491.07 s	100.0 %	Π	Stable	1	5 µs	
E50	84	332.12 s	100.0 %	TA	Stable	1	862 µs	
E51	85	325.11 s	100.0 %	TA	Stable	1	1218 µs	
E53	87	322.71 s	100.0 %	Π	Stable	1	290 µs	
E56	90	315.66 s	90.9 %	Π	Stable	1	192 µs	
E06	7	230.26 s	100.0 %	TI	Unknown	1	CW	
		1						

Modular MOTS products


Digital Front End Receiver

- Modular products for RWR, ESM & ELINT applications
- Software upgradeability for future threats
- For UAVs, fix wing, helicopters and transport platforms



Multisignal capability: Handling of different threat signals

 Modern systems are required to show weak and strong threat signals, even on the same frequency

Only strongest threat signal shown

Weak and strong threat signals on same frequency shown at different angles

Full digital receiver product

- Full digital receiver technology for quick & reliable classification
- Excellent multi-signal capabilities for dense scenario
- Avoiding RF cabling
- → Best protection for the platform

04 Conclusion

- Enhanced survivability for platforms operating in todays contested and congested EMS environments is key!
- Tackling current real world challenges requires fully modular, SW-defined, digital RWR,
 ESM & ELINT products with extremely low false alarm rates off the shelf
- Cognitive support tools based on artificial intelligence can optimally support the operators in handling "big data"
- It is real! Please visit us at our booth A12

Thank you for your attention.

