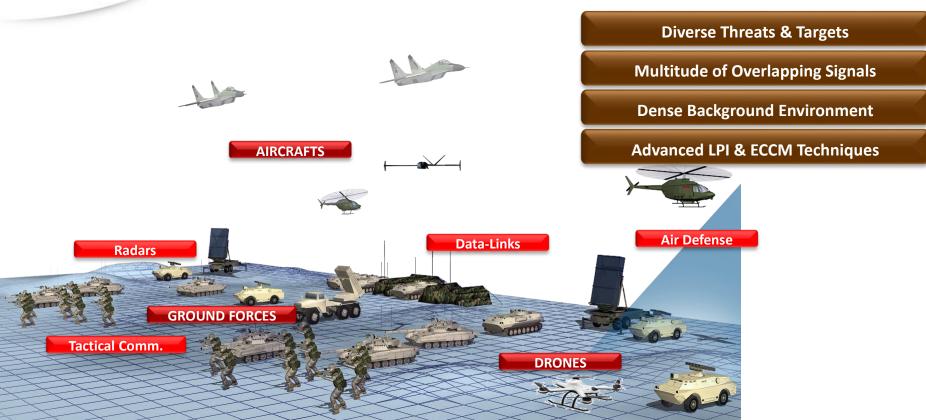


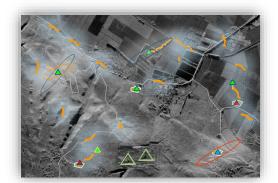
MULTI-FUNCTION AESA FOR EW MISSIONS


Dr. Nitzan BARKAYIntelligence, EW & Comm. Division

ELTA Systems Ltd.

Unclassified

The EW Operational Environment



Modern EW Battlefield

- Complex & dynamic scenario
 - □ Dense EM environment
 - EM spectrum saturation
 - Background and interference signals
 - Dynamic scenario
 - Large diversity
 - Fast changing
 - □ Proliferation of modern weapon systems
 - Complex waveforms
 - LPI signals
 - ECCM operation
 - Software-defined

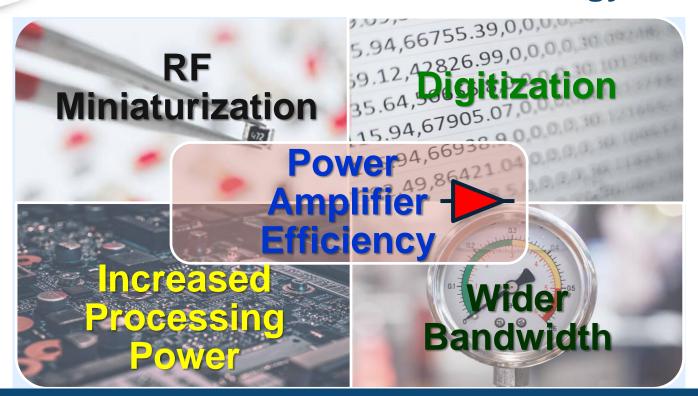
nclassified

Confronting the Modern EW Battlefield

 EW systems should be OPTIMAL for EACH signal, threat, target and mission within the complex battlefield

- Powerful capabilities
- Adaptability

System Requirements


- Wide coverage
 - □ Spectrum: frequency & bandwidth
 - □ Spatial: platform & mission dependent
- Powerful capabilities
 - Interception: high sensitivity for LPI signals
 - Transmission: high ERP against modern threats
 - Processing: Optimal operation for each signal & threat; All together

- Wide coverage
- Powerful capabilities
- Adaptability
- Adaptability
 - Mission flexibility
 - Selectivity
 - Control over all aspects of the electromagnetic signal
 - Time, frequency, polarization, direction, amplitude
 - **¬ Multi-function**

nclassified

Trends of Available Technology

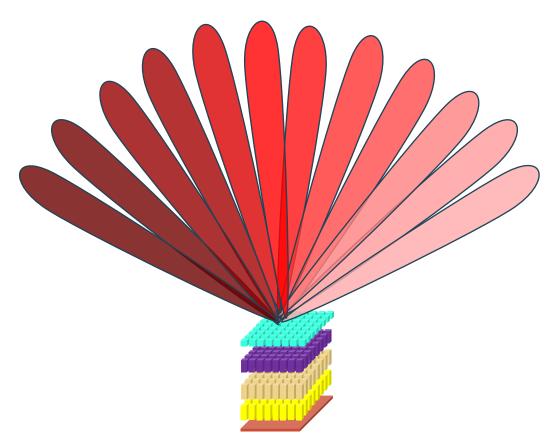
Technology trends contribute to future EW solutions

Technology trend – AESA

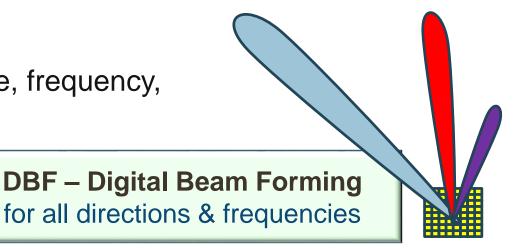
AESA-based systems widely used in radars

Enhanced Wideband operation

Extensive Online processing

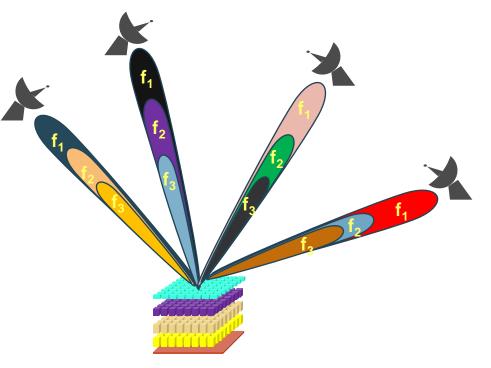

Core technology for new generation of active & passive EW systems

Active Electronically Scanned Array


AESA – Directional Receive/Transmit Beams

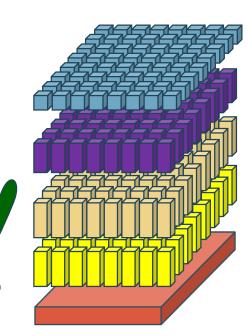
AESA – Directional EW Operation

- Directional operation supports all Rx & Tx tasks
 - Sensitivity of a narrow-beam
 - □ Selective interception
 - Higher ERP
- Controllable direction, time, frequency, amplitude, polarization
- Multi-beam option



Focusing in all directions

Multi-layered Selectivity in AESA EW


- Selectivity and resolution by
 - □ time,
 - □ frequency,
 - □ polarization,
 - direction
- Even for complex threats
 - □ Waveform can be very agile
 - □ Target position (= direction) is relatively stationary

EW AESA Design

- Digitization of array processing
 - □ Frequency & Phase
 - Amplitude
 - Timing
- Directional Transmitter
- Staring Receiver
 - Reception in all directions
 - Simultaneous operation
 - □ Wide coverage, narrow beam-width

Antenna Array

Front RF

Sampling

Processing

Application Layer

EW AESA Implementation Challenges

- Driving challenge is Bandwidth
 - Phased-array implementation vs. digital beam forming
 - □ Antenna array
 - □ RF elements
 - □ High power transmit elements
 - Digital data rate

- Implementation issues
 - Bandwidth
 - Digitization
 - Processing
 - Response time
 - Size
 - Power consumption
 - Cooling
 - Cost

EW AESA for Airborne SPJ

Reception

- Handle multi signals simultaneously
- Wide coverage with narrow-beam sensitivity
- Receives weak signals
- Selectivity track signals according to direction
- Interference filtering

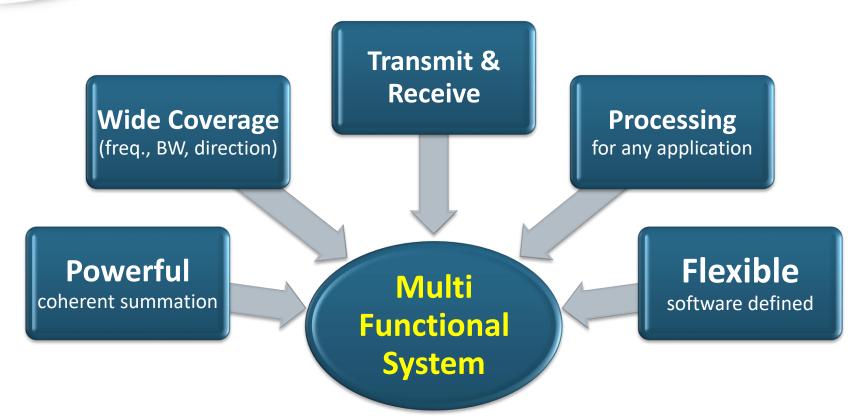
- Pinpoint jamming
- Less interference to others
- Multi-Beam jamming
- Controllable power, frequency, direction

EW AESA for Ground System

Reception

- Handle a dense signal environment
- Directional resolution & selectivity
- Wide coverage with narrow-beam sensitivity
- Receives sidelobes & weak signals from long range
- Interference filtering

Transmission


- Powerful jamming
- Less interference to others
- Multi-Beam jamming
- □ Controllable power, frequency, direction

(ELL-8256SB)

AESA Multi-Functional System

Multi-Functional System (model 1)

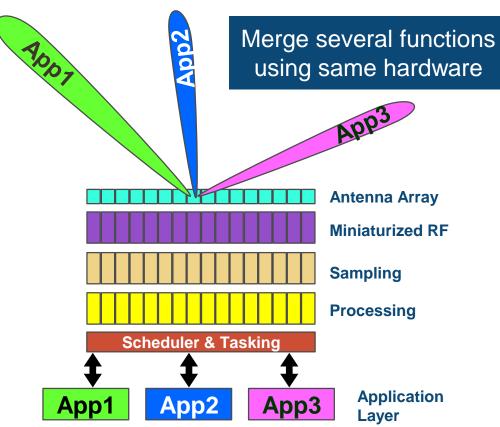
A unified system for multiple functions

- Specific tool for each function
 - Operated one by one
 - Total size & weight increases with the number of functions

Multi-Functional System (model 2)

A unified system for multiple functions

- Common HW for most functions
 - Functions may be operated in parallel
 - Same size & weight for (almost) all functions

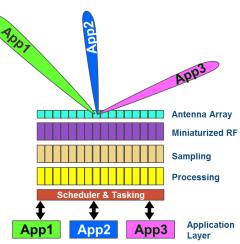

Digital

Unified AESA Multi-Functional System

- Various Roles
 - □ Active FW FP & FA
 - □ Passive EW ELINT
 - □ Communication
 - ¬ Radar
- Common aperture
- Software scheduler & tasking
 - Operational priority
 - System limitations

Limitations of Multi Function

- Performance compromise
 - Compared to a specialized tool for each function
 - But better compactness and suitability to small platforms
- Cost
 - More than each function exclusively
 - □ But more affordable than the total sum



Conclusion

EW AESA is a basis for all EW applications

- Wide-angle staring with pencil-beam sensitivity
- Multi-layered selectivity
- Directional high ERP beams
- Potential for a multi-functional unified system

Focusing in all directions for all missions