

New Techniques for Assessing Radar ECM Effectiveness

Dr Bob Andrews MBE Business Development Consultant

Presentation Outline

- Improving EW Operational Support (EWOS)
- Radar emulation modelling using SDR techniques
- The anti-ship missile (AShM) threat
- Scenario modelling of anti-ship missile engagement
- Measures of ECM effectiveness and mission effectiveness
- Summary and conclusions

 ϵD

ELDES[®] Srl - located in Florence, Italy Established in 1993

ELDES[®] Srl

A small, leading edge technology company specialising in high performance radar emulation and ECM effectiveness equipment and systems

Purpose of the Investigation and Design

- Improve the design and implementation of radar countermeasures for EW operations
- Define alternative methods of determining mission effectiveness
- Investigate new methodologies against using an example AShM operational scenario
- Examine additional methods/displays to further enhance countermeasures EWOS

 $\epsilon \Gamma$

ECM Effectiveness and Effect of Mission

Definitions Used

- ECM Effectiveness
 - a measure of the degradation in radar performance when exposed to an ECM technique
- Mission Effect
 - an estimation of the final effect caused by a given single or multiple ECM techniques, including tactics, on a radar

 $\epsilon \Gamma$

Factors That Determine ECM Effectiveness

- Success of radar electronic countermeasures (ECM) is affected by many independent variables:
 - ECM transmitted power
 - ECM antenna patterns and scans
 - Radar antenna patterns and scans
 - Radar transmitted power
 - Weather
 - Angle between ECM and radar
 - Terrain and multipath
 - Timeliness of ECM
 - 0

Primary Technology Basis

- Uses well-established in-service software-defined radar (SDR) technology to generate highly accurate HWIL radar emulations
- SDR allows the definition of the desired threat radar which can be based on user ELINT information,
 - Emulate radar emission in real-time
 - Emulate radar receiver processing chain in real-time (unique capability)
 - Emulate other radar behaviour including ECCM
 - Evaluate ECM effectiveness against radar

 $\epsilon \Gamma$

Radar Emulation Data Structure

Software Defined Radar Models Emulated in Real-Time Hardware

Radar Framework Software: the user can generate his own radar models by linking radar library blocks in a graphic environment

Menu Driven Radar Designs Emulated in Real-Time Hardware

ntenna Pattern Editor				? ×		
muth Sector 360	Elevation Sector 18	0 Angular	Resolution 0.5	Tabl	e resolution	
Common beam 1x + x		C Separate beam 1x+x				1
am 1 SUM Beam 2 De	ta AZ Beam 3 Delta EL Beam	4 OMNI				1
ax Beam Gain (dB):	34.437	User-defined Gain (dB):	35	Bear	ns Available	
Ream Shape			. Arrest			
sin(x) / x	🔘 Gaussian 📃 Cheb	ychev 💿 Taylor	External			
Beam Width(°):	3	Cosecant2			L	
Beam Height(°)	3	Active			Parameters	
First side lobe level (dB):	15	Ma Anala (0):		т	synthesize	
Far side lobe att. (dB):	40	Min Angle (-):		10	synthesize	
Delta Azimuth squint °	1.5	Max Angle (°): 10			the antenna	
					haama	
External antenna pattern	file:				beams	
	Antenna	Pattern				
40 7						
30						
_			0	Amplitude		
g 20 -				Phase		
	Δ			Azimuth		
⁹ ¹⁰	, All		0	Elevation		
0-000	AAAAAAA '	ΙΠΛΛΛΛΛ		Refresh		
	UVVVVVVIII	IIIIVVVV				
-10						
	-50 X = sin(el)	50 (az)				
			UK	Cancel		

🔝 Radar Type					8 ×	
Radar Type	Test	tochanical		Electropic		A
Antenna Type	© F	ectronic w/Mec	thanical Azimu	th		Antenna Type
Max Acc El (deg/s²)	50					
Max Acc Az (deg/s²)	50					
Max Vel El (deg/s)	50					
Max Vel Az (deg/s)	50					
Minimum Azimuth	0					
Maximum Azimuth	360					
Minimum Elevation	0				5-	na Paramatara
Maximum Elevation	90				Se	rvo Parameters
Description						
Pencil Beam	© M	Ionopulse	Ô	Stacked Be	ams	
Channel Single E	Beam Delta A	Z Delta EL	OMNI	None	Elevation	
1 🔍					0.0	
2 🔿			\bigcirc	۲	0.0	
3 🔘			\odot	۲	0.0	
4 🔘			\bigcirc	۲	0.0	
5 🔘			\bigcirc	۲	0.0	
6 🔘			\odot	۲	0.0	
7 🔘			\bigcirc	۲	••• Be	ams Definitions
8 🔘	0	0	Ô	۲	0.0	
	Μ	lode			Add	
					Edit	
				[Delete	
					Duplete	of architecture
						of architecture
					Control	

Data Analysis Tools

- Utilise in-built analysis and radar displays provided by the radar emulator (EPRS)
- Integrate off-the-shelf tools for analysis and visualisation (SIMDIS)
- Perform multiple runs of scenario to provide statistical analysis

Radar Emulator System (EPRS)

Anti-Ship Missile Threat

- Navies face both legacy and latest stateof-the-art anti-ship missile threats
- Newest threats are hypersonic leaving little or no time to detect and respond in traditional ways
- ASM tactics are changing from deceiving the seeker head to deceiving the acquisition radar as a result

Test Scenario Details

- Test scenario will be run 4 times
- Effectiveness of ECM will be examined
- Overall mission effect will be determined

Test Scenario No Jamming

Search/Acquisition Radar Model

Ð

Tracking Radar Model

ASM Radar Model

Radar Module Configuration POWER PW PRI Freq Logarithmic Converter • Display Pulses Power Integrator SUM Range-Doppler Tracking Delta AZ Delta EL Angle Errors (Monopulse) Antenna Loop Filtering Missile Library • OMNI Display Pulses Power Integrator Display Logarithmic Converter Logarithmic Converter 🔶 Display Pulses Power Integrator Analog Pulse Pack Digital Scan Save Cancel

Acquisition Phase Video with ECM

An acquisition radar used to launch the missile The scenario uses a noise jammer. ECM effectiveness is computed by looking at the time the target is correctly acquired vs the total jamming time

Scenario	time target lock-on (sec)	time target not lock-on (sec)	Acq. Dist. (ready to launch) (Km)	Effectiveness
Run 1 No Jammer	60.0	0.00	36.1	0%
Run 2 Jammer	28.50	31.50	30.1	52%
Run 3 Jammer	24.00	36.00	27.3	60%
Run 4 Jammer	27.60	32.40	28.2	54%
Run 5 Jammer	25.80	34.20	29.7	57%
Average Run W/Jammer	27.15	32.85	28.8	54.75%

ASM Tracking Video with ECM

Monopulse tracking radar guiding the missile

The scenario uses an active decoy to create a false target that is initially inside the range gate which then moves to seduce the missile. ECM effectiveness is computed by looking at when the seeker is locked onto the right target and when it is locked onto the wrong target or in break-lock

Scenario	Time target locked-on (sec)	Time target not locked-on (sec)	ECM Effectiveness
Run Without ECM	21.00	0.00	0%
Run 1With ECM	3.36	17.64	84%
Run 2With ECM	2.90	18.09	87%
Run 3With ECM	1.91	19.30	92%
Run 4With ECM	3.15	17.85	85%
Average			87%

Overall Mission Effect Analysis

Following table shows the overall mission effect computed on 4 runs

Scenario	Missile launched	Target Miss-Distance (m)	Miss-distance Threshold exceeded?	ECM effective	Mission overall effect
Run 1	Y	197.0	Y	Yes	
Run 2	Y	183.0	Y	Yes	760/
Run 3	Ν	NA	NA	Yes	7376
Run 4	Y	7.50	Ν	No	

Ð

Overall Optimal Mission for AShM Protection

Summary and Conclusions

- Illustrated the use of programmable radar emulation for radar modelling in EWOS CM development
- Example of new visual and analysis EWOS tools integrated displays, SIMDIS, etc
- Provided an alternative method for determining effectiveness of radar countermeasures in a complex scenario
- Further analysis tools are currently being investigated waterfall displays, 3D plots, enhanced SIMDIS displays and more integrated data collection and analysis programs

eΓ

Thank You for Your Attention

Questions?

For further information and demonstrations please visit us at **Stand A19**

EW Europe 2019 - Stockholm