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1. Introduction 
The inherent variability of the human anatomy precludes the use of average geometries when 
developing population-representative human models.  For the purpose of human modeling for injury 
prediction or medical training, models must ideally account for internal differences that exist due to 
patient demographics (e.g., race, age, gender) and/or external physical anthropometry (e.g., height and 
weight).  Along this vein, allometry is a method for identifying how an organism’s internal 
anatomical structures scale with its overall size.  Most prior work has focused on studying allometric 
laws for single organs in the human body.  However, given the complexity of the human body, a 
multi-organ approach is likely to produce a better understanding of how the internal structures vary 
collectively. 
 
Conventional approaches to allometry focus on producing statistical shape atlases for anatomies of 
interest.  Such atlases are designed to capture how a particular structure’s size, shape, and location 
information varies within or across populations.  Expanding on previous work, this effort developed a 
computational pipeline to process a set of thoracic patient Computed Tomography (CT) images 
representative of a population of interest (e.g., military), and produce a multi-organ statistical shape 
atlas to better quantify shape differences.  The atlas provides a means for identifying relative 
differences in organ shape, size, and location between patient demographic and anthropometric data, 
as well as the ability to make predictions about the internal geometries using external information.  
The current method and pipeline analyzes the lung, liver, kidneys, and spleen, but is extensible to 
other anatomies. 
 
Several statistical shape atlas techniques and systems have been developed and tend to fall into three 
categories. First, single-organ atlases highlight the variation of an individual organ's shape1 (others 
also combine multiple single-organ atlases2 3).  Next, aggregate atlases generate a single model that 
represents an “average” organ shape4.  Finally, segmentation-driven atlases discover inter-organ 
relationships5 6 7.  However, these atlases are primarily used to inform automated segmentation 
processes, but unlike our approach, do not enable investigations of allometric scaling laws or 
prediction of geometries from anthropometric measurements.  Prior human modeling work has 
provided limited insight into the allometric laws for multi-organ systems.  This paper intends to 
address some of these limitations. 
 
This paper provides an overview of the computational pipeline including a discussion of the overall 
architecture and key components.  Additionally, a dataset of subjects representative of the United 
States Army population was collected and processed through the pipeline to produce multi- and 
single-organ statistical shape atlases.  A number of statistical analyses were conducted using these 
atlases to investigate allometric trends within this military-representative population.  This report 
provides a discussion of the results and recommendations for future work and utilization of the 
pipeline. 
 
2. Methods 
 

2.1. Overview 
The following sections outline the key components of the statistical shape atlas pipeline and the 
associated tools for atlas evaluation and study.  At a high-level, the approach consists of four main 



components: data collection/pre-processing, the computational pipeline, data analysis/post-processing, 
and visualization.   

 

 
 

 
 

Figure 1. Computational pipeline design 
Raw CT images are converted to a common data 
format, processed to remove artifacts, segmented 

automatically, and segmentations are used to 
generate statistical shape atlases. 

 

Figure 2 Target dataset demographic distributions selected to 
span a military-relevant population. 

 

 
2.2. Data Collection 

One objective for developing a pipeline for computing multi-organ statistical shape atlases is to 
enable population-specific analyses.  Therefore, in order to study shape and size properties of 
different organs, data for a representative sample of the population of interest should be collected 
using a 3-dimensional medical imaging technique. Our process currently uses X-ray CT images, but 
could be extended to other modalities (e.g., MRI). We also capture external demographic and 
anthropometric data to enable future analysis and prediction based on external covariates instead of 
atlas mode weights directly. 
 
An application was submitted to the institutional review board (IRB) and accepted to collect and 
analyze an existing CT image dataset at the Johns Hopkins Medical Institute. This project focused on 
identifying allometric trends related to organs of the thorax (i.e., lung, liver, kidneys, spleen, and 
bladder) and as such, a dataset consisting of thoracic CT scans of subjects representative of the 
military population was required. Only strictly normal scans of the thorax were collected and included 
in this study (normal by report and inspection).  Any scan with obvious or minimal pathology was 
excluded. Scans that showed organs without disease but with findings different from normal were also 
excluded.  In order to maintain consistency with the military population, a set of demographic bins 
(see Figure 2) were identified based on the Army Anthropometric Survey (ANSUR II)8 and archived 
images were selected in an attempt to fill those bins.   
 
For all CT images collected, height and weight were also extracted from the medical record archives. 
Six other measurements, more specifically – waist front length, chest span cranial-caudal (CC), chest 
depth, chest breadth, waist breadth, and bispinous breadth – were manually approximated from 
landmarks on the CT images. Visualizations of all eight of these external measurements are shown in 
Figure 3.  
 



 
 

Figure 3. Visualization of anthropometric measurements. Height and weight were extracted 
from medical record archives while the remaining measurements were measured from the CT 

scans. 
 
 

2.3. Computational Pipeline 

2.3.1. Data preprocessing 
In order to facilitate downstream computation and ensure consistency across the dataset, all CT 
images were exposed to several pre-processing steps.  In particular, the images were re-sliced to have 
uniform voxel dimensions (i.e., 1mm on all sides) and padded so that volume dimensions were fixed 
across the dataset.  Background subtraction was also performed on each image to remove all external 
image artifacts (e.g., scanning table, jewelry, etc.) introduced during the scan. 

2.3.2. Isomap 
Our method also requires a set of manually segmented scans in order to generate biological priors 
required for automated segmentation.  Unlike previous methods that select a reference CT randomly, 
we take a more principled approach by selecting a set of scans that span the population’s variability. 
 
We use the Isomap method9 in a novel iterative approach to embed the high-dimensional CT images 
in a lower dimensional space where each dimension captures major modes of variation.  This iterative 
method is geared toward finding an embedding of the CT images in a lower dimensional space 
whereby the CT image closest to the population mean is the image whose lower-dimensional 
representation is closest to the origin (see Figure 4).  A set of additional subjects are selected as local 
references by performing K-means clustering in Isomap-space and selecting the subjects closest to the 
K cluster centers.  All references, global and local, are then manually segmented by an expert 
radiologist. 
 



 
 

Figure 4. Isomap embedding of male CT images 
Note: APL22 lies closest to the origin and was selected as the male reference.  The first Isomap 

dimension appears to approximately capture overall subject size (small to large). 
 

2.3.3. Automated Segmentation 
In order to identify shape differences across the population, 3D shape information from each organ 
must be extracted from the CT images from a large number of individuals representative of that 
population.  The cost of using a radiologist to perform the organ segmentation is prohibitively high as 
the number of CT images grows beyond just a few. As such, automated approaches using computer 
vision must be adopted to provide a scalable solution.  
 
We have developed a novel segmentation method that combines machine learning and traditional 
segmentation to extract organ shapes automatically from CT volumes.  We apply a two-stage 
approach for each organ of interest.  In the first stage, we train a set of Random Forest10 classifiers to 
label volumetric pixels (i.e., voxels) as organ or non-organ using the closest manually-segmented 
local reference in Isomap-space as ground truth for our classifier.  The classifiers are then applied 
pixel-wise to the un-segmented test subject.  In the second stage, the segmentation produced using the 
Random Forest classification is used as a seed for traditional Random Walker11 segmentation.  The 
result is the extraction of volumetric information for each organ of interest. 
 

2.3.4. Mesh Transfer 
A statistical shape atlas is generated once a set of manual or automated segmentations is available.  
The computational pipeline must first identify corresponding landmark points on all of the 
segmentation surfaces and then align those points in the same reference space.  The atlas measures 
how these points vary across the population dataset. 
 
On the global reference (i.e., the subject closest to the population mean), a mesh is generated for each 
organ where the nodes of the mesh become the set of surface points that we’ll identify on all other 
subjects in the dataset.  For each subject in the dataset, we generate a higher resolution mesh and use a 
series of point-cloud registration techniques (i.e., Procrustes and ICP) to align the subject mesh with 
the global reference mesh.  When alignment is complete, for each surface point in the global reference 
mesh, we select the nearest surface point in the high-resolution subject mesh. 
 
Once point correspondence is achieved, we rigidly align each subject into a common global reference 



frame using Procrustes Analysis. This is akin to putting all of the subjects into a common coordinate 
system where they are all aligned via translation and rotation.  
 

2.3.5. Principal Component Analysis 
With each subject defined by a list of corresponding points defined in a common coordinate system, 
we analyze the set of subjects using Principal Component Analysis (PCA)12.   
 
The input data matrix to the PCA algorithm is formed by first unraveling a subject’s landmark point 
locations into a single row vector followed by stacking row vectors for multiple subjects.  The final 
statistical atlas is comprised of the PCA components.  By modifying the weights for individual 
components, new geometries can be synthesized or existing structures can be reconstructed.  When 
PCA is conducted using N subjects, the atlas will consist of a mean vector (representing the average 
geometry) and N-1 principal components. 
 

2.4. Regression Analysis 
We sought to explore the potential of predicting internal organ geometry from a combination of 
demographic and anthropometric information using our multi-organ shape atlas. Previous work13 
presented an initial feasibility study of predicting single organ geometry from nine demographic and 
anthropometric variables using a statistical shape atlas. Here we extend that work to predicting 
multiple organ geometry from eleven demographic and anthropometric variables. 
 
As shown in Figure 5, our proposed method has three main steps. The first step is to perform PCA to 
more easily characterize our atlas of mesh points. Thus, each subject mesh, 𝒙𝒙𝒊𝒊 (𝑖𝑖 = 1, … ,𝑁𝑁), may be 
represented by the equation 

(1) 
where 𝒙𝒙� represents the mean mesh shape, 𝑀𝑀 is the number of principal components, 𝑎𝑎𝑖𝑖𝑖𝑖 represents the 
weights, and 𝒆𝒆𝒋𝒋 represents the principal component vectors. 
 

 
Figure 5. Overview of internal geometry prediction. 

 
The next step in the prediction pipeline is to train a regression between the principal component 
weights computed from the previous step and the demographic/anthropometric data of our atlas 
subjects. Generally speaking, regression applies an equation model to compute a best fit between the 
independent variables and the dependent variable. In our case, the independent variables come from 
the demographic/anthropometric data and the dependent variable is a single principle component 
weight. This is repeated for all principle component weights, amounting to 𝑀𝑀 regression equations. 
Using the common linear regression technique, the principal component weights may be represented 
as 



(2) 
 

where 𝑎𝑎𝑖𝑖 (𝑗𝑗 = 1, … ,𝑀𝑀) are the dependent variables (i.e., principal component weights), 𝑥𝑥𝑘𝑘 (𝑘𝑘 =
1, … ,𝐾𝐾) are the independent variables (i.e., measurement data), and 𝑏𝑏𝑖𝑖𝑘𝑘 (including 𝑘𝑘 = 0) are the 
coefficients for linear regression. In addition to linear regression, stepwise regressions using both 
constant and quadratic initial models were also explored. 
 
Once PCA has been applied and the coefficients from training our regression model have been 
obtained, the final step is prediction. Given demographic/anthropometric data from an unknown 
subject, we may now predict the mesh points of the unknown subject by first computing the principal 
component weights using the regression coefficients (as in (2)). We then reconstruct the mesh points 
using the principal components and mean mesh shape as done in (1). Reconstruction using stepwise 
regression is done similarly, except regression coefficients are computed using the optimized equation 
model. 
 

2.5. Atlas Viewer 
Since the atlas data is very complex with hundreds of thousands of vertices per organ and many-
dimensional component vectors, it is impossible to fully comprehend the data directly without some 
visual aid. Therefore, an atlas viewer was built to display the atlas data as well as allow interactive 
exploration in order to better grasp the meaning of the data. Key features of the atlas include selection 
of atlas data based on demographics (i.e., age, sex, ethnicity), visualization of internal organ geometry 
predicted in real-time from arbitrary external anthropometric measurements, computation of various 
internal metrics, and additional visualization tools to compare various geometries.  
 
3. Results 
 

3.1. Data Collection 
In total, 180 CT images (96 males, 84 females) were included in the final dataset. These patient CTs 
met the established demographic requirements, and were confirmed to have absence of disease or 
abnormality by an expert radiologist.  The demographic distribution is described in Figure 6. An even 
gender balance was successfully achieved, but Hispanic subjects, and subjects in the 17-20 age range 
were slightly under-represented due to difficulty finding appropriate medical scans. 
 

 
 

Figure 6. Subject demographic distribution included in shape atlas. Green indicates greater 
than or equal to five images obtained. Yellow indicates at least one image but less than five 



obtained. 
 

3.2. Computational Pipeline 
The dataset was split into male and female subsets and each subset of images was passed through the 
computational pipeline.  By leveraging the pipeline framework, individual organs were segmented in 
parallel and merged (per patient) at the last step.  As such, the pipeline takes a set of CT images and 
produces a corresponding set of multi-organ segmentations. 
 
 Since the objective of the pipeline is to produce a multi-organ statistical shape atlas, only 
segmentations whose qualitative accuracy was sufficiently high for all organs were selected for input 
into the atlas generation pipeline (see Section 2.4 for more details).  The results of the qualitative 
assessment are described in Table 1.  Figure 7 provides examples of automated segmentation outputs. 
Overall, the computational pipeline was able to process the male and female scans within 24 hours on 
our cluster of 10 High Performance Computing nodes.  In contrast, expert radiologists required, on 
average, 6 hours per individual subject. 
 

 
 

Figure 7. Automated segmentation outputs: (left) Acceptably accurate segmentation; (right) 
Segmentation with noticeable inaccuracies (e.g., spleen, bladder) 

 
 

Table 1 
Qualitative assessment of automated segmentations 

Each cell represents the number of segmentations that were deemed to have few or no 
segmentation errors.  Total number of male, female segmentations was 96, 84 respectively. 

 

 
 

3.3. Regression Analysis 
Results were obtained by taking the mean errors produced by leave-one-out validation. This form of 
validation removes a subject from the atlas when applying the training steps of PCA and regression, 
but uses that subject as the unknown subject for the testing step of prediction. Errors are computed on 
a point-by-point basis when the predicted mesh is compared to the actual mesh, and an overall mean 
error is computed when all subjects have been left out and tested.  Our multi-organ statistical shape 
atlas was constructed from the 50 automated segmentations that contained accurate segmentations for 
all organs (lung, liver, spleen, and kidneys).  The regression results presented in this section are based 



on the atlas built using the Procrustes analysis for mesh alignment, and are summarized in Table 2. 
 
Stepwise regression using a quadratic initial model also resulted in relatively large mean errors. We 
discovered that this is due to overfitting, i.e., too many terms were used to train the regression model, 
thus producing low residual errors on the training data, but high errors on new testing data. We 
proposed various techniques to predict internal organ geometry based on demographic/anthropometric 
information, and conclude that stepwise regression using a constant initial model produces the least 
overall mean error for our six atlases (see Table 2). 
 

Table 2 
Mean errors (mm) for leave-one-out validation 

 

 
 

In order to get a better visual sense of how well stepwise constant regression performs in predicting 
meshes, the best and worst subjects corresponding to the minimum and maximum mean errors, 
respectively, are shown for each atlas in Figure 8. Note that in the best-case scenarios, errors rarely 
reach above 25 mm and shapes are rather smooth. In the worst-case scenarios, however, the errors 
may reach up to 100 mm, and shapes tend to be rougher. While the current effort focused on 
developing a single regression model to simultaneously predict the anatomies of the organs, it is 
hypothesized that developing separate independent models for all organs may yield greater accuracy 
in anatomical results, although the project completed before this approach could be investigated.  
 

 
Figure 8. Visualizations of best-case (minimum) and worst-case (maximum) predicted 

geometries colored by error (mm). Positive error reflects a difference from ground truth in the 
surface outward-facing normal direction, while negative error reflects a difference from ground 

truth in the surface internal-facing normal direction. 



 
3.4. Atlas Viewer 

A screenshot of the developed organ atlas visualization tool is shown below in Figure 9. The 
Euclidean distance is computed between points on the surface of the comparison mesh (white, 
transparent) to the equivalent point on the surface of the baseline mesh (colored). The distance is 
measured in millimeters and a color is applied so that green indicates 0mm distance and red indicates 
>20mm. The viewer can toggle the user interface to display a predictive geometry based on specific 
subject demographic and anthropomorphic metrics. The baseline mesh can be set to any other subject 
demographic or the overall average of a population to easily comprehend the differences in internal 
anatomy between the two conditions.  
 

 
 

Figure 9. Comparison to baseline geometry based on distance 
 
4. Discussion and Conclusion 
This project has successfully designed and implemented a computational pipeline for generating 
multi-organ statistical shape atlases.  The utility of the pipeline was demonstrated on a military-
representative subject population which was collected and processed through the computational 
framework. Furthermore, a regression approach was identified to be able to predict internal structure 
from only external anatomical information.  Finally, a visualization tool was developed to provide a 
way to qualitatively examine and analyze geometrical shape and statistical differences between 
demographic bins. 
 
This work demonstrates the ability to generate a population-representative multi-organ statistical 
shape atlas, and initial feasibility using this atlas to predict the internal anatomy of specific population 
or individual subjects.  The current statistical analysis is based on quantitative properties extracted 
from the data, such as gender information, demographic information, and discrete anatomical 
measurements calculated from boney landmarks. Ideally, an approach would be implementable where 
internal organ prediction models could be automatically generated from subject surface scans.  
 
Future work should focus on improving key elements of the pipeline (e.g., segmentation), utilizing 
other imaging modalities (e.g., MRI), and expanding the training CT dataset to build more robust 
atlases.  The goal is to utilize the statistical atlases generated by the pipeline as well as the statistical 
analysis tools to improve capabilities for developing highly-accurate human anatomical models 
employable for a variety of applications ranging from injury prediction models to improved methods 
for medical simulation, training, and treatment. 
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