

Fidelity Considerations when Developing a Severe Trauma Female Simulation

ITEC 2018

Teresita M. Sotomayor, Ph.D. U.S. ARL-HRED ATSD Angela M. Alban SIMETRI, Inc.

The Nation's Premier Laboratory for Land Forces

UNCLASSIFIED

- Background
- Importance of Fidelity
- Importance of Simulating Injury Patterns
- Technology Development
- Technology Assessment
- Results
- Path Forward

WARNING: GRAPHIC INJURIES

SFC Paul Ray Smith Simulation & Training Technology Center

Background

- Recent studies have highlighted a need to explore the impact of sex and gender in clinical training to improve outcomes for female patients (McGregor and Choo, 2015)
- A recent review of the Department of Defense Trauma Registry (DoDTR) over an 8-year span determined that:
 - 1.9% of all casualties were female service members
 - 2.4% of all deaths were female service members
 - 26% higher mortality rate for females after a traumatic injury than males (Cross, et al., 2011)
- Treatment at the point of injury must be immediate and without reservation, regardless of gender

SFC Paul Ray Smith Simulation & Training Technology Center

U.S. ARMY RDECOM®

Background

ARL

 The number of female soldiers serving in combat arms continues to increase

- As of 2016, 15.5% of the United States' active-duty military force was comprised of females
- Female engagement teams played a prominent role in conflicts over the past ten years

Background

- Human Patient Simulators (HPSs) currently used by the U.S. Army are malecentric
- Current female and male HPSs and Part Task Trainers (PTTs) lack anatomical and physiological fidelity
- Women are now serving in combat roles

SFC Paul Ray Smith Simulation & Training Technology Center

Importance of Fidelity

- Defense Health Board (DHB) emphasized:
 - Trauma training should be emotionally demanding, physically intense and realistic
 - Scenario-based exercises must include basic critical tasks and focus on mastery of skills, not merely familiarization

Importance of Fidelity

 "Trauma simulation needs to be realistic. Students should have the ability to practice life-saving interventions on a realistic manikin to develop skills and confidence. The first time they have to care for a casualty with bilateral amputations should not be on a real person. Having treated similar wounds on a simulator gives them a little picture in the back of their mind that they have done this before, successfully, and they now have the confidence to perform"

> Donald L Parsons PA-C Deputy Director, Department of Combat Medic Training Ft. Sam Houston

SFC Paul Ray Smith Simulation & Training Technology Center

u.s. army RDECOM®

RDECOM Importance of Simulating Injury Patterns

- Create reluctance
- Create difficulties
- Improve realism
 - Visual and tactile
 - Anatomical
 - Physiological

SFC Paul Ray Smith Simulation & Training Technology Center

Tension pneumothorax is a life-threatening condition that can occur with chest trauma

UNCLASSIFIED

Importance of Simulating Injury

Patterns

- Female patients may not be properly examined for a chest wound
- First responders may hesitate to respond to the medical needs of female patients
 - Ingrained societal taboos are preventing first responders from being prepared for female casualties

SFC Paul Ray Smith Simulation & Training Technology Center

Importance of Simulating Injury Patterns

Tension Pneumothorax

Mid-clavicular line

SFC Paul Ray Smith Simulation & Training Technology Center

Importance of Simulating Injury Patterns

Needle Chest Decompression

- Need to insert needle through the chest wall (using a 14 gauge cannula)
- Males and females have different chest wall thicknesses
 - Current needle not long enough for full penetration to release pressure
 - Negative training when holes from previous attempts remain visible (Boyle, et al, 2016)

Boyle, Malcolm, Brett Williams, and Simon Dousek. "Do Mannequin Chests Provide an Accurate Representation of a Human Chest for Simulated Decompression of Tension Pneumothoraxes?" World J Emerg Med World Journal of Emergency Medicine 3.4 (2012): 265. Web. 8 Mar. 2016.

SFC Paul Ray Smith Simulation & Training Technology Center

RDECOM Technology Development ARL

- Develop a high fidelity female anatomical model for practicing Needle Chest Decompression (NCD) psychomotor skills
- Interface the anatomical models with already existing HPSs currently fielded at the MSTCs,
- Low-cost, rugged solutions

SFC Paul Ray Smith Simulation & Training Technology Center

RDECOM Technology Development

- Surveyed DoD and Civilian sectors to identify training gaps
- Conducted research and examined commercially available PTTs
- Conducted material science basic research
- Designed and developed a prototype based on user requirements
- Conducted usability testing

SFC Paul Ray Smith Simulation & Training Technology Center

Technology Development

• Developed more realistic and compatible female anatomy

Simple Susie Female Manikin

Skin Vest with Breasts on Laerdal Manikin

SFC Paul Ray Smith Simulation & Training Technology Center

RDECOM Technology Development ARL

Mid-clavicular Line

Original Skin from Laerdal SimMan 3G

New Vest Skin

UNCLASSIFIED

SFC Paul Ray Smith Simulation & Training Technology Center

- A usability study was performed at the Orlando Medical Institute on a noninterference basis. Test users included Paramedics and Nursing students (n = 15)
- Focused on evaluating the usability of the system to support training objectives and to assess if the system is intuitive, effective, and subjectively acceptable to users (Nielsen, 1993)

- Participants provided feedback using a survey questionnaire
 - Participants were given a usability questionnaire with 16 questions assessing system utility
 - Participants answered the questions on a scale from 1 (strongly disagree) to 7 (strongly agree), with higher scores signifying a better experience

Summary of Results (Mean Responses)

Category	Response
Benefit to Training/Meets Training Objectives	6.70
Usability	6.13
Realism	6.49
Physiological/Anatomical Accuracy	6.49
Motivation to Use	6.48

SFC Paul Ray Smith Simulation & Training Technology Center

Results

Average Scores per Category

SFC Paul Ray Smith Simulation & Training Technology Center

Path Forward

 Develop female face mask for HPS

U.S. ARMY RDECOM®

- Refine and test genitalia design
- Conduct usability testing planned to solicit feedback from combat medics, paramedics, EMTs, and physicians

Conclusion

- Severe trauma injuries create major challenges for front line military medical personnel
- High fidelity simulations immerse trainees into realistic scenario-driven events to provide stress inoculation training
- Relevant scenarios must incorporate gender specific differences

References

- Boyle, M. (2012). Do mannequin chests provide an accurate representation of a human chest for simulated decompression of tension pneumothoraxes? *World Journal of Emergency Medicine,3*(4), 265. doi:10.5847/wjem.j.issn.1920-8642.2012.04.005
- Cross, J. D., MD, Johnson, A. E., MD, Wenke, J. C., PhD, Bosse, M. J., MD, & Ficke, J. R., MD. (2011). Mortality in Female War Veterans of Operations Enduring Freedom and Iraqi Freedom. *Clinical Orthopaedics and Related Research*, *469*(7), 1956-1961. doi:10.1007/s11999-011-1840-z
- Jenkins, M. R., Herrmann, A., Tashjian, A., Ramineni, T., Ramakrishnan, R., Raef, D., Shatzer, J. (2016). Sex and gender in medical education: a national student survey. *Biology of Sex Differences*, 7(S1). doi:10.1186/s13293-016-0094-6
- Mcgregor, A. J., & Choo, E. (2012). Gender-specific Medicine: Yesterday's Neglect, Tomorrow's Opportunities. *Academic Emergency Medicine*, 19(7), 861-865. doi:10.1111/j.1553-2712.2012.01389.x
- Nielsen, J. (1993). Usability engineering. Boston: Academic Press.

SFC Paul Ray Smith Simulation & Training Technology Center

U.S. ARMY RDECOM®