

A learning model for RPAS sensor operators and its implications for training

Remotely Piloted Aircraft (RPA)

Ground Control Station

ITEC, 14-16 May 2019, Stockholm, Sweden

Olaf Brouwer

Joost van Oijen

Gerald Poppinga

Operator Performance Simulation, Artificial Intelligence Defence Systems, Artificial Intelligence Jan Joris Roessingh

Training, Simulation

- Drones in the RNLAF
- Required Knowledge at the RNLAF
- Approach
- Part task Training and Transfer
- Modelling of Human Operators with AI for training requirements
- Conclusions:
 - Overview
 - Applicability

Drones at the Netherlands Air Force: today and tomorrow

AGS RQ-4 (HALE)

High Altitude Pseudo Satellite (HAPS)

Source: edrmagazine.eu

MQ-9 (MALE)

Source: insideunmannedsystems.com

Drones at the Netherlands Air Force: future

UCAV

Unmanned Vertical Lift

Unmanned Cargo Aircraft

Source: Marcus Ruetten, DLR, researchgate.net, 2014

Source: defensesystems.com/articles/2016/03/07/darpa-vtol-x-plane-phase-2.aspx

Source: Airbus https://www.airbus.com/defence/uav.html

Remote Split Ops: involved Flight Crew

•	1 system :	4 aircraft
•	1 CAP :	

24/7 aircraft above area of interest

Mission Control Element (2 GCS)		Launch & Recovery Element (1 GCS)		Processing, Exploitation & Dissemination	
Pilots	7	Pilots	3		
Sensor Operators	7	Sensor Operators	3	Analists	52
Mission coordinators	5				
Other	24	Other	53	Other	14

Mission Control		Launch & Recovery		Processing Exploitation Dissemination (PED)	
Aircraft	0	Aircraft	4		
Personnel	43	Personnel	59	Personnel	66
Pilots	7†	Pilots	3	FMV Crew	34 [‡]
Sensors	7 t	Sensors	3	SIGINT	18
Maintenance	8	Maintenance	53	Maintenance	14
Msn Coordinator	5				
Leadership	2				
Admin/Overhead	14				
Other Equip	1	Other Equip	3		
Ground Station	1	Ground Station	1		
		Satellite Link	1		
		Data Terminal	1		

USAF-numbers (164 FTE in total for 1 system):

Deptula, D. (2010). The Way Ahead: Remotely Piloted Aircraft in the United States Air Force, U.S. Air Force, briefing, downloaded December 2014 from http://www.daytonregion.com/pdf/UAV_Rountable_5.pdf.

Solution Notice The Air Force

- Drones
 - Which requirements for education and training?
- Training
 - How to realise higher yields for training at lower costs?
- Artificial Intelligence / Machine Learning
 - How to model [requirements for education and training] with Machine Learning?

Training Analysis Approach

Tasks Competencies Training Priorities

Flight Crew Focus: Sensor Operator Scope: During Flight

Training Objectives Tr. Programme

Which training strategies give the best 'transfer-of-training' ?

Part task training

A part task is a *segment*, a *fraction*, or a *simplification* of a whole task ...

Re-integration of part-tasks during training

a. pure part-training

b. progressive part-training

c. cumulative part-training

Bron: NLR-TP-2002-646

Modelling of Human Operators with A.I.

Using AI to predict the human learning process

Al Model: Serious Games as a learning environment

Serious game for training complex task

Space Fortress

- Designed under DARPA LSP (Eighties)
 - Research of instructional strategies, human learning of complex skills
- Contains complex cognitive and perceptualmotor tasks
- Learned skills are transferable to the operational task environment

- Can a machine learn a complex task such as Space Fortress of drone sensor handling?
- How does this learning process compare with the human learning process?
 - Comparison between man and machine
 - Learning Curves
 - Part Task Training (Transfer)

Learning of Atari games (DeepMind, 2014)

Comparing Human Learning with Machine Learning

- Examined as an instructional strategy for humans
- Does part task training yield similar results as with machines?

Part Task Training in Space Fortress

Leerning curves of man and Machine

nlr

- A machine (AI model) is capable to learn a complex task
- The machine has a diminished 'sample-efficiency' but, eventually, performs better than humans
 - General 'problem' with machine learning (amount of data)
- Human-Machine Comparisons
 - Characteristic shape of the learning curves is comparable
 - Part Task Training : The machine exhibits similar transfer
- Future work
 - To develop better predictors based on state-of-the-art AI algorithms

- Results relevant for recruitment, selection and training of Sensor Operators
- Prediction of transfer-of-training seems possible
 - Validation with NLR's RPAS simulator
 - relevant tasks
 - Delay/ failure of data link
 - Hand-over between Ground Control Stations
 - Sense-and-Avoid taken

Verrassend betrokken

Nederlands Lucht- en Ruimtevaartcentrum

NLR Amsterdam Anthony Fokkerweg 2 1059 CM Amsterdam

t) +31 88 511 3113 f) +31 88 511 3210 e) info@nlr.nl i) www.nlr.nl NLR Marknesse Voorsterweg 31 8316 PR Marknesse

t) +31 88 511 4444 f) +31 88 511 4210 e) info@nlr.nl i) www.nlr.nl