
Connecting Simulations of Various Architectures in a Central Simulation
Framework with Networking Capability to Support Wargaming for the

Swedish Armed Forces

Gunnar Hovmark1, Fredrik Jonsson2
1Consultant, ÅF, Stockholm, Sweden, gunnar.hovmark@afconsult.com

2The Swedish Defence Materiel Administration, fredrik.jonsson@fmv.se

Abstract -- Models of human behaviour and technical systems based on different simulation architectures

are combined together around a central simulation framework with facilities for distributed simulation.

Experts in fields such as human behaviour modelling, air defence tactics, missile simulation, radar

performance calculation and aircraft performance modelling provide models and data. The COTS

simulation framework provides timing, visualization, data logging, connectivity and basic models of some

systems. The simulation results are analysed to provide data mainly to support wargaming for the Swedish

defence planning activities. The current simulation setup mainly deals with simple air defence scenarios,

but size, complexity and time span can be increased and other applicable models and simulations from the

Swedish defence community can be added.

1 Introduction and background

The Swedish Armed Forces have appointed the Swedish

Defence Materiel Administration (FMV) and the Swedish

Defence Research Agency (FOI) to provide simulations to

support wargaming for defence planning activities.

 The simulations use models and data from various

parts of the defence community, and are based on different

architectures. All are synchronized and run using a COTS

simulation framework. The choice of tools has been made

with distributed networking capability in mind.

 The aim of the simulations is to evaluate air defence

scenarios. Initially quite simple, but the ambition is to

gradually increase scope, size, complexity and time span.

 Outcomes from the simulations will be used to support

adjudication in the wargaming that is performed as a part

of the Swedish defence planning process.

2 Central connecting framework

FLAMES from Ternion Corporation (www.ternion.com),

was chosen as the central connecting framework for the

simulations. The other simulation programs that were

considered were mainly in-house developed by Swedish

authorities and/or companies, and it was anticipated that

the small user base for those programs would have made

support less accessible and continuity might have been a

problem, so a COTS tool was preferred. FLAMES was

already in use in the Swedish defence community, mainly

within FOI but also at Saab, FMV and the Swedish

Defence University, and others. There are users worldwide

and a support organization that responds quickly to any

questions we may have. FMV also hosts meetings with a

users’ group with members from Sweden and Finland.

 The FLAMES architecture offers easy setup of

simulations by using C or C++ components that represent

behaviours, systems and subsystems, and datasets

containing data and scripts to connect and configure the

components. The “Service” facility in FLAMES is useful

for driving other simulations synchronized with the

models that run within FLAMES itself, and external

simulations can be connected by using the FLAMES

facilities for the DIS (the Distributed Interactive

Simulation protocol) or HLA (High Level Architecture)

standards.

Fig. 1. Diagram showing current setup with auxiliary processes

Fig. 1 shows the main components of the current

simulation setup. FLAMES controls the scenario, provides

the simulation time, visualisation and datalogging, and

also runs a number of models that have been integrated

into FLAMES, such as aircraft, terrain, sensors, weapon

effects and weapon systems. The cognition models that

represent pilot behaviour, known as MCGF, are run in a

separate process that is connected to FLAMES via a

service and a software interface. The missile models also

run in a separate process and are connected in a similar

way as the cognition models. The DIS/HLA connection is

currently not in use.

http://www.ternion.com/

3 Networking

Fig. 2. Ground part of a DIS demo, using aircraft data via DIS

Networking using DIS, see for example reference [1], or

HLA, see for example reference [2], can be a way to

connect to simulations that are not easily linked directly

into the central framework, and it can also be a way to

bridge the gap between constructive simulation on one

hand, and live and virtual simulation on the other. This

capability has so far not been required in the project, but

may be useful in the future.

 FLAMES provides facilities for DIS PDUs (Protocol

Data Units) for Entity State, Detonation, Fire,

Start/Resume, Stop/Freeze and Acknowledge.

 FLAMES comes with full source code for processing

these PDU types, so you have a good start if you need other

PDUs.

 Platforms and effects can easily be connected to their

DIS enumerations (see reference [3]) based on their

regular identifiers in FLAMES, so you have to change very

little in your already running non-DIS simulation. What

you have to do is to make sure that the identifiers of your

existing platforms and effects point to the correct DIS

enumerations, and connect any DIS enumerations that may

come from the outside to the proper identifiers of the

corresponding platforms and effects that you want to be

present in FLAMES.

Fig. 3. Encoding, identifier MiG-29 to DIS enumeration

Fig. 4. Decoding, DIS enumeration to identifier MiG-29

 The HLA connectivity in FLAMES is based on the old

HLA 1.3 standard, so for connection to current HLA real-

time interfaces you will probably want to use DIS on the

FLAMES side and get a DIS to HLA gateway from a third

party.

4 Models

The current activities have focused mainly on models of

fighter aircraft, air-to-air missiles and fighter pilot

behaviour. So far there has been less emphasis on models

of sensors, communications, electronic warfare, surface to

air and air to surface capability and the chain of command,

so there is still a considerable amount of work to do before

there is a complete simulation of a whole air defence

scenario.

 Models and data are mainly provided by FMV and FOI,

but also from defence equipment suppliers. The models

used have been developed over a considerable length of

time and with very different philosophies regarding

simulation architectures. It was at an early stage

determined that it would not be practical for all of the

models to be converted to code that would fit directly into

the architecture of one central simulation program. The

alternative method of choice in the current project is to use

the FLAMES “Service” facility, a class that is suitable for

initializing and calling a separate simulation program with

a fixed time step. C functions can then be added in

FLAMES to call dedicated functions and subroutines in

the separate simulations to exchange data and perform

interactions.

4.1 Missile Models, Refbib and Rbsim

The air to air missiles that are used in the simulations come

from a software package known as “Referensbiblioteket”,

the Reference Library, Refbib for short. This started out in

the 1990s as a common source for missile and aircraft

simulations to be used within the Swedish defence

community. A substantial effort was invested in these

models in the form of CFD calculations, wind tunnel tests,

data from manufacturers, analysis, and assumptions made

by knowledgeable people in some cases where data were

insufficient. The large organization that was behind this

work in the 1990s has shrunk considerably, but there has

been a continuous effort to keep the models up-to-date and

to add new ones when needed.

 The models are updated by use of manufacturers’ data

whenever it’s available, and with data from calculations

and estimates as necessary. The emphasis of the models is

on dynamics, i.e. thrust, aerodynamic forces and inertia,

while models of guidance systems and warheads are

relatively simple at this time.

 The initially chosen design for the models, simulation

software and development tools was based on UNIX and

FORTRAN, with extensive use of FORTRAN features

such as COMMON blocks and DATA statements.

Interfacing with other simulations is performed mainly by

calls to FORTRAN functions and subroutines, and the core

of the simulation is calls with fixed time steps to the

subroutine Rbsim. One single call to Rbsim advances all

active missile models one time step forward.

Fig. 5. Typical plot from missile model development

4.2 Aircraft Models, FMV TeknUnd and FLAMES

One important development effort in the preparations for

the simulations was to create realistic aircraft models.

Since the external models that were available consisted

mainly of data tables, and because FLAMES comes with a

simple aircraft model that is a good beginning for a more

realistic model, it was chosen to build these models

directly into the FLAMES architecture. FMV’s Technical

Intelligence Department (FMV TeknUnd) can provide

extensive performance data for various aircraft. The data

comes in multi-dimensional tables such as CD0 as a

function of altitude and Mach number, CL as a function of

angle of attack and Mach number, fuel consumption and

thrust at full power as a function of Mach number and

altitude, and a few others. This is translated into a table

format called AER, which is a simple plain text format for

multi-dimensional tables, see reference [4].

Table 1. A fictional aerodata table in AER format

CDICL2

CDi/CL^2 as function of Mach and CL:

140317

2

CL

MACH

0 0 0

0 0.7 0

0.1 0 0.1

0.1 0.7 0.15

0.1 1. 0.16

0.1 2.0 0.18

0.2 0 0.15

0.2 0.7 0.18

0.2 1. 0.19

0.2 2.0 0.12

0.5 0 0.15

0.5 0.7 0.18

0.5 1.0 0.10

0.5 1.5 0.09

1.0 0 0.12

1.0 0.7 0.15

1.0 1.0 0.16

 FLAMES comes with complete source code for a large

number of models known as Bundled Models. They should

mainly be viewed as patterns for how to use every function

in FLAMES, but they are also very useful as starting points

for creating one’s own models. They are coded in C or C++

and provide a component based approach to including

models in FLAMES simulations. The bundled aircraft

model was modified to use data from the tables, and its

equations of motion were updated to provide a three

degrees of freedom aircraft model with a performance that

is very close to what the data tables and diagrams provided

by TeknUnd indicate. The models are driven by FLAMES’

built-in event-based simulation. However, our settings in

FLAMES mean that everything is in essence a time-based

simulation with a fixed time step of 0.02 seconds, just like

Rbsim.

Fig. 6. Specific Excess power diagram used to verify table data

Fig. 7. Turn rate diagram used to verify table data, “open” F-16

The source code for the bundled aircraft model has been

altered and expanded with the following additions:

 It now includes fuel consumption, so the pilot model

will attempt to return to base when the fuel level reaches

“Bingo fuel”.

 The weight and drag of external stores is taken into

account.

 If the pilot model tries to climb or turn too abruptly at

low speed the plane will stall (but it will recover very

quickly).

 The attitude angles are calculated in a slightly more

realistic way. Heading and path angle just follow the

velocity vector. Roll is calculated based on load factor,

path angle and inclination of the turning plane.

 Large heading changes require a little cheating. The

pilot models may demand a heading change of 180 degrees.

If the nose of the plane is pointing down, the turning plane

based on that attitude and that heading change may in part

be located under ground level, which causes a crash. To

avoid that, turns are made in pieces of twenty degrees,

where the final attitude angle is reached almost

immediately. It also means that large heading changes are

almost always .performed as level turns.

 Time constants have been added for roll rate and load

factor growth, to make the reversal of a turn take a realistic

amount of time.

 There are also limits for roll rate and for load factor.

 The aircraft model takes the pilot model’s climb and

acceleration demands and adapts them to a climb angle and

speed that is better suited to what the aircraft can actually

achieve.

4.3 Cognition Models, FOI’s MCGF

FLAMES includes bundled cognition models that can be

used to create behaviours for all the units in the simulation.

The project’s first demonstrations to the Swedish air force

were made with the use of these models, but we were soon

ordered to use MCGF instead. MCGF is an acronym for

Merlin Computer Generated Forces. Merlin is a

component-based architecture that was developed by FMV,

FOI and others some ten years ago, to some extent with the

ambition to create a common simulation architecture for

the Swedish defence community, much like Refbib but

with a more extensive and more modern approach. See

reference [5]. The Merlin programs have their own time

manager, and the time is advanced by a call from the

FLAMES service at each time step. The cognition models

decide about their actions approximately three times per

second, simulator time.

 FOI have chosen a behaviour tree approach to

behaviour modelling within the Merlin architecture. The

tree is defined in xml files that the user has full access to,

while the actions, the “leaves”, used in the behaviour tree

are defined in “ordinary” C++ methods where the access

is left to a smaller number of experts. For more information

about behaviour trees, see reference [6] and reference [7].

You can read a little more about the pilot models in

reference [8].

Fig. 8. Small part of behaviour tree, from reference [6]

 The behaviour trees have been developed over a period

of several years by scientists at FOI in collaboration with

pilots and tactics experts at FLSC, the Swedish Force Air

Combat Simulation Center. The trees represent three major

behaviour types: blue fighters, red escort fighters and red

air-to-ground attack.

 The blue fighters’ normal behaviour is to follow an air

corridor until the they reach the location for their combat

air patrol pattern, then keep patrolling until they either

need to return to base for lack of fuel, or until they

encounter the enemy. If the enemy is detected the fighters

will engage and continue fighting until they run out of fuel

or missiles, or are shot down. If all enemies within sight

are destroyed and the fighters still have fuel and missiles

they go back to patrolling.

 The red escort fighters will escort another group of red

aircraft until they encounter the enemy. Then they will

switch to air-to-air combat mode and behave quite similar

to the blue fighters.

 The red air-to-ground attack aircraft perform a mission

that consists of following a pre-defined mission profile. If

they reach the point where they can launch the missiles or

drop their bombs, the mission is a success. No assessment

of damage to the targets is made in the current simulations.

The attack aircraft are fully aware of all other aircraft

within a given pre-defined distance, and will try to avoid

enemy fighters while keeping the formation together and

following the mission profile.

 The pilot models have four “behaviour controls” that

are the main facilities for experimenting with pilot

performance. They are Accuracy, Aggression, Speed and

Randomness. It is not necessarily so that a high value is

good and a low value is bad.

 High accuracy makes the pilot model utilize missile

performance more effectively but also makes its behaviour

more predictable to the opponent.

 High aggression increases the likelihood both of killing

the enemy and of being killed.

 High speed makes the pilot model react more quickly

but sometimes also to act too soon.

 Randomness has not been used so far, partly because it

is already possible to get quite widespread outcomes by

small changes to various parameters in the scenarios such

as initial altitude, speed and position.

 For the user, other things that can easily be changed

and experimented with in the behaviour trees by editing

the xml files are altitudes, Mach numbers and formations

used at the different stages of the mission, how close units

must be for the pilot model to be interested, various time

delays and reaction times, limits for path angles and limits

for low level flight.

4.4 Environment model

The environment model is simple. The world is elliptical

and the geodetic system is WGS-84. On top of that terrain

elevation data can be added. Currently only terrain data for

northern Europe is used, in DTED 0 resolution. The

distance between elevation data points is then

approximately 900 meters, which is quite sufficient for air-

to-air scenarios. Smaller areas, size depending on available

memory, can be modelled in DTED 1 or DTED 2

resolution, i.e. with approximately 90 meters or 30 meters

between elevation data points. The elevation data is used

to calculate line of sight data and sensor coverage, and to

register flight into terrain. It is also visualized in the form

of a map as seen in fig. 9 below.

Fig. 9. Terrain created from DTED 0 data

The terrain data can also be seen in a perspective view that

is sometimes useful to visualize how the different units

move.

Fig. 10. Perspective view based on DTED 0 data

4.5 Other models

Sensors and weapon systems are modelled using the

FLAMES Bundled Models with only minor changes.

Sensors and countermeasures against sensors are the most

important next steps in the model development.

5 Connection to FLAMES, Integration in
MS Windows

The codes for missile models and for pilot models have

been developed and tested in their own environments over

a long time, and converting them to run within the

FLAMES architecture was expected to require extensive

changes that would be costly and potentially risky. An

approach was needed where changes to the code were as

small as possible.

Microsoft Windows is the main environment when

working with FLAMES, and the main development tool is

Visual Studio, and that had to be taken into consideration,

although some versions of FLAMES are also available for

Linux. The solutions for the missile models and the pilot

models turned out a little different as will be shown below,

although there are many similarities.

5.1 Missile models

Making the Rbsim and missile models work in Windows

was a little challenging. The missile models and the entire

set of tools that are used to develop them are based on

FORTRAN and run in an Ubuntu environment, i.e. a Linux

distribution. After looking over our alternatives we settled

for the following solution:

 The development and testing tools are still in Ubuntu,

only the missile models and the programs necessary for

running the simulation are used in Windows.

 The FORTRAN compiler used is the one found in

MinGW, “Minimalist GNU for Windows” that can be

downloaded for anyone to use. MinGW also contains some

necessary runtime DLLs.

 The make utility is also a GNU product, from

GNUWin32. The makefiles were altered a little in order to

work both in the Ubuntu and the Windows environment.

 To link the object code generated in MinGW together

with Visual Studio code a number of special steps are

needed:

 You need to have the tool dumpbin available. This

is achieved by running Visual Studio’s file vcvarsall.bat in

a command window like this:
>C:\WINDOWS\system32\cmd.exe /k ""C:\Program Files
(x86)\Microsoft Visual Studio 10.0\VC\vcvarsall.bat""
x86

 Then in the same command window you run your

makefile that creates your .dll file.

 The makefile for Windows has to include the

following lines after the rbsim.dll file has been built in

MinGW:
 dumpbin /exports rbsim.dll
 rem Now edit the rbsim.def file!
 pause
 lib /def:rbsim.def /out:rbsim.lib /machine:x64

 During the pause the rbsim.def file must be edited

to begin with EXPORTS on the first line, followed by the

names of all the functions that dumpbin printed, like this:
 EXPORTS
 abstodb_
 aktiv_rb_
 alim_
 angle_
 angletohorizon_
 antennagaindb_
 .
 .
 zontrig_
 zr_g1_
 zr_rb_

 The last line in the makefile then creates the file

rbsim.lib that the Visual Studio linker can use to link the

rbsim functions so they can be called by the service in

FLAMES. This has proven to work very well, and with a

few compiler directives and the test

 ifeq ($(OS), Windows_NT), the same makefiles can be

used both in Ubuntu and in Windows. Rbsim.dll in

Windows contains a number of special FORTRAN

subroutines that can be called from C functions in

FLAMES to submit and retract data to and from the missile

simulation.

5.2 Pilot models

 The MCGFs are normally developed and used in an

Ubuntu environment, but for FLAMES use FOI re-built

everything using Microsoft Visual Studio 2010 in

Windows. It will be migrated to a later version of Visual

Studio, but for the moment our main development

environment is Visual Studio 2010.

 FOI also provided an adapter between the pilot models

and the aircraft model, sensor models and weapon system

model that are run in FLAMES. It communicates with the

FLAMES environment using the standard command,

query and message utilities in FLAMES.

6 Visual Studio versions

FLAMES itself is currently developed using Microsoft

Visual Studio 2017, but simulation developers can also use

Visual Studio 2010 and Visual Studio 2013.

7 Scenario setup

FLAMES comes with complete source code for a tool

named Scenario Controller. This has been extended for the

project’s needs and is a convenient way to set up and

control scenarios. It is now typically used to set up

formations of aircraft with initial altitudes, headings,

speeds, positions and separations and send them out on

their missions. Additional formations can be thrown into

the scenario at predetermined points in time. Parameters

that define the scenario can be inserted in the form of

FLAMES scenario variables that can be set either from

scripts or from a GUI.

Examples of scenario variables in fig. 11 below are

BlueUnitsize and BlueLeaderStartLat.

Fig. 11. Scenario Controller Window

Fig. 11 shows a Scenario Controller in the Unit Editing

window, which is one of the main tools for setting up

scenarios. Scenario Controller is the only unit that is set up

directly in this example, and all aircraft units are set up by

commands to Scenario Controller. Other units that can be

added directly in the Unit Editing window are for example

radar sites, various parts of the command chain, and

ground vehicles. Commands that are used to determine

what the unit will do are listed in the Commands window,

and parameters to be used by each command are listed in

the Inputs window.

7.1 Extensions to Scenario Controller

ASSIGN_COMMANDER_TO_FORMATION: Tells the

leader of an aircraft formation that it should take orders

from a controller on the ground.

ATTACK_GROUND_TARGET_IN_FORMATION:

Tells a formation of attack aircraft to fly to a launch point

and launch munitions against a ground target.

MCGF_SET_PROTECTION_GROUP: Orders MCGF

controlled escort fighters to protect another formation of

aircraft.

START_MCGF_FORMATION_ON_HEADING: Starts

a formation of MCGF controlled aircraft on a given

heading.

FLY_MCGF_IN_CORRIDOR: Orders an MCGF

controlled formation to fly along a given air corridor.

SETUP_MCGF_FORMATION: Composes a formation

of MCGF controlled aircraft with a given number of

aircraft, at a given start time, at a given altitude and with

given speed and heading. I.e. the formation will

immediately start cruise flight. There are eight pre-

defined formation types, and a “CUSTOM” formation

can also be defined.

START_MCGF_FORMATION: Starts a formation that

has been set up by SETUP_MCGF_FORMATION.

Optionally tells the formation where its base is, so it can

return to base.

 The commands are tailored for the MCGF type pilot

models, but there are also similar commands for the

FLAMES type models.

Fig. 12. Beginning of the scenario

8 Data collection and processing

The various simulation programs can log their own data,

but it was chosen to channel all data logging through

FLAMES. As default, FLAMES can log detects, launches,

hits and misses, when objects are destroyed and the tracks

of all objects, and some data about the simulation’s

performance. There is also the option to store a playback

file that contains everything that is needed to play a

recorded simulation back in the tool FLASH.

 In addition to the above, any variable in the simulation

can be logged, although a bit of programming is needed to

do this. Examples with complete source code are provided

with FLAMES.

 Most of the data logging is performed in a pure text

format in .csv files, as labels and numbers separated by

semicolons. That format is easily imported into MATLAB,

Excel or a PostgreSQL database. MATLAB is mainly used

to plot recorded data for debugging and verification. Excel

is used for “simple” statistics, which usually are the most

useful, while PostgreSQL can be used for more complex

data processing. An advantage with PostgreSQL is that the

PostGIS spatial database extender is convenient for storing

and processing data for land areas and effects of air to

ground munitions, for example to evaluate damage to

runways.

8.1 PostgreSQL data processing example

A Java program provides a GUI for loading .csv log files

into the database. The same GUI is then used for running

a PostgreSQL script that provides statistics such as:

How many aircraft participated on each side?

Who detected who first?

Who launched first?

At what distance were opponents detected?

Who were able to fire before being detected?

Who were never detected at all?

How many missiles were launched from each side?

At what distances were the missiles fired?

How many aircraft were destroyed on each side?

In air to ground scenarios (currently not used):

How many air to ground munitions were launched?

How much of the target was destroyed?

8.2 Further data processing

 Most of the data processing is performed by FOI, and

the results are presented as statistics and converted into

likelihoods of outcomes depending on a number of initial

scenario parameter values such as number of aircraft,

numbers and types of missiles, available fuel, altitudes and

speeds. This is still a work in progress and will not be dealt

with in detail here.

9 Future model development

The current setup is useful for developing methods and to

simulate scenarios that are limited in space and time, but

all models need to be refined to various extents. Sensors,

communications, electronic warfare, surface to air and air

to surface capability and the chain of command need to be

modelled in more detail. Models of refuelling and

rearming are available but are not currently in use. Models

of logistics, maintenance and repairs can be added to create

scenarios that span over several days, to give an idea of

logistics requirements and perseverance.

10 Conclusion

The project began with the notion that there were a number

of dissimilar data sets and models out there that would be

beneficial to join together in a constructive simulation

environment. We looked for a way to do this with a well-

documented and supported tool. Our finding was that the

choices were very few. The advantage we found with

FLAMES over the few alternatives was that it has several

customers and is well documented, that there were already

people in the Swedish defence community that had

substantial experience from using it, and that it had an

already existing and functioning support organization. For

an old C programmer the ways to incorporate components

in FLAMES also look a lot less complicated than some of

the alternatives.

 This paper shows a way to take advantage of a COTS

tool with built-in networking facilities, technical support

and a wide user community, and combine it with in-house-

developed software of various ages and architectures.

 The work so far has mainly been a matter of using what

we already had in a useful and efficient way, and create an

environment that can be gradually improved. It is expected

that the current sources will continue to contribute and that

new partners will emerge.

 Lessons learned:

 There are plenty of things you don’t have to do

yourself if you choose the right COTS tool.

 Don’t rewrite code more than necessary, find

other ways to integrate it with the simulation. Code is not

obsolete just because it’s not developed using the latest

methods.

 Constructive simulation with advanced computer

generated players and adequate system model fidelity is an

excellent way to improve the understanding of how a

dynamic situation can develop and what factors are

important for the outcome, especially if scenarios can be

set up and modified easily.

11 Terms and abbreviations

Bundled models Models that are delivered with

FLAMES, with complete source

code. Contain examples of how

(nearly) all functions in FLAMES

are used.

BVR Beyond visual range.

Combat Air

Patrol (CAP)

Here: A flight pattern where two or

more aircraft fly back and forth in

a manner that at all times allows at

least one of them to direct its radar

in the direction from which the

enemy is expected. Enemy aircraft

are engaged when they get closer

than a pre-determined distance.

Dataset Group of data in the FLAMES

database. Each dataset can contain

data about for example a number of

platforms or a number of

behaviours. Scenarios are built

mainly by configuring and

changing datasets.

FIRE FLAMES Interactive Runtime

Executable (which ironically is the

least interactive of the FLAMES

programs). FLAMES program that

runs simulations fast without

graphics.

FLAMES Flexible Analysis and Mission

Effectiveness System. Simulation

framework supplied by Ternion

Corporation.

FLASH FLAMES Scenario Highlighter.

FLAMES program that is used to

visualize recorded simulation data.

FLSC The Swedish Air Force Air

Combat Simulation Center.

FOI The Swedish Defence Research

Agency.

FMV The Swedish Defence Materiel

Administration.

FMV TeknUnd FMV’s Technical Intelligence

Department.

FORGE FLAMES Operational

Requirements Graphical Editor.

FLAMES program that is used for

setting up and testing of scenarios.

Event driven

simulation

The simulation is not run at a

steady pace, but is driven by

scheduled events.

MBDA European missile system supplier.

Manufacturer of the Meteor air-to-

air missile. Owned by Airbus, BAe

Systems and Leonardo.

MCGF Merlin Computer Generated

Forces. Behaviour models

developed by FOI. Based on the

Merlin architecture and behaviour

trees.

Merlin A component based software

architecture for simulation models.

Developed by FOI and FMV.

Currently used by FLSC, and

others.

Mermoc files Xml (extended markup language)

files that are used to define various

characteristics in MCGF, for

example the structures of the

behaviour trees.

Pattern The highest model aggregation

level in FLAMES. A unit in a

FLAMES simulation is often an

instance of a pattern. A pattern

usually consists of two or more

dictionary entries.

Refbib ”The reference library”. A large

number of FORTRAN source code

files and data files that define a

number of aircraft and missile

models suitable for ”easy”

inclusion in various simulation

environments. For example

FLAMES.

Saab Swedish company. Important

supplier to the Swedish armed

forces, for example of the Gripen

combat aircraft.

Scenario

variables

Variables that are stored in datasets

in FLAMES and can be used to

configure units and scenarios.

Time based

simulation

The simulation is performed with

constant length time steps, and

events happen because of the states

that are integrated forward in the

various models.

Weapon System Model in FLAMES that represents

the interface between the human

behaviour model and the munition.

Sometimes also automates some of

the behaviour model’s tasks.

Unit A unit in FLAMES is for example

a complete instance of an aircraft

with pilot, armament, sensors,

radio, countermeasures and so on.

It could also for example be a

missile, a vehicle with driver or a

ship with crew and all on-board

systems.

References

[1] 1278.1-2012 - IEEE Standard for Distributed

Interactive Simulation--Application Protocols (2012)

[2] B. Möller, M. Karlsson, B. Löfstrand, Å. Wihlborg, S.

Eriksson, M. Johansson, F. Klasson, P. Svensson, P.

Aktanius, The HLA Tutorial, a Practical Guide for

Developing Distributed Simulations, Pitch Technologies

AB (2012)

[3] SISO-REF-010-2015, Reference for Enumerations for

Simulation Interoperability, Version 21 (2015)

[4] T. Stavöstrand, U. Teige, B. Sundberg, O. Karlström,

B. Busk, Generiska Aerodatamodellen, Saab AB (1996).

[5] E. Salling, P. Strömbäck, J. Lindh, C. Hildings, N.

Wallin, M. Fredriksson, MERLIN Software Architecture

Document, FOI-R--2486--SE, (2012)

[6] K. Hultgren, A. Rensfelt, E. Salling, P. Ögren, En

introduktion till beteendeträd, FOI Memo 4630, (2013)

[7] Kristoffer Hultgren, Anna Önehag. Behavior Trees.

FOI-D--0748--SE, 2016-11-14

[8] Kristoffer Hultgren. MERLIN Computer Generated

Forces (MCGF). FOI MEMO 5529, 2015-12-04.

Authors

Gunnar Hovmark is a consultant employed by ÅF, an

engineering and design company within the fields of

energy, industry and infrastructure. He has recently

worked in various simulation related projects within the

Swedish Defence Materiel Administration, FMV. He is a

graduate from the aeronautical engineering programme at

the Royal Institute of Technology in Stockholm and has

many years of experience of virtual and constructive

simulations within The Aeronautical Research Institute of

Sweden and the Swedish Defence Research Agency.

Fredrik Jonsson is working as a Project manager for

M&S at the Swedish Defence Materiel Administration

(FMV). He holds a M.Sc. degree in Mechanical

Engineering from Linköping Institute of Technology

(LiTH), Sweden. Over the last fifteen years he has been

working with different M&S projects focused on M&S

infrastructure and design. Today he is responsible for a

project that aims to develop and maintain an ability to use

simulation to support the Swedish Armed Forces defence

planning activities.

