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Abstract — XVR Simulation offers advanced incident command training support with immersive 3D virtual reality 

environments, 2D maps, communication and media-oriented simulators for emergency services, companies, and 

governments to train their personnel at operational, tactical and strategic command levels. These training tools are 

explicitly developed to support the flexibility and agility desired by instructors, who are always in full control of the 

scenario both during its definition as well as during every training session. With customers showing a rising demand 

to train at a larger scale and include behaviour of large simulated crowds in their scenarios, instructors are being 

overburdened with orchestrating all the items in response to participants’ actions. XVR Simulation has embarked on a 

quest to include Artificial Intelligence (AI) technologies to assign autonomous adaptive behaviour to any item in any 

scenario in support of the instructors. The major challenge to be addressed here is to include AI technologies that (a) 

the instructor can understand, that (b) can handle interventions during training, and (c) are easily used by instructors 

when creating and running training scenarios. 

After investigating possible solutions, XVR Simulation has adopted the MASA DirectAI engine to address the above-

mentioned challenge. Within the XVR architecture, the concept of a virtual ‘brain’ was introduced: a reasoning and 

decision-making process based on available sensor information that can autonomously decide on the execution of 

actuators. In order to support understanding and interaction between instructors and ‘brains’, an appropriate level of 

abstraction for brains’ sensors and actuators needed to be defined. These concepts needed to be integrated into the 

instructors’ mental model of a training scenario. Sensor information is defined in terms of scenario concepts (e.g., 

opposing party (red team), emergency services (blue team), safe zones, danger zones, victim treatment zones, et cetera). 

The actuators are defined as scriptable tasks that an instructor creates for a training scenario. Both sensors, actuators 

and strictly defined decision-making attributes of the brains are freely configurable by the instructor, fulfilling the three 

criteria of the challenge. 

The first implementation of this solution shows that the approach adopted by XVR has resulted in understandable 

autonomous behaviour for crowds. The chosen solution unburdens the instructors from (a large number of) manual 

scenario interventions, while still retaining the control necessary in unforeseen training moments.  

1 Introduction 

XVR Simulation [1] is one of the leading developers of 

training software for safety and security professionals. Its 

vision is to create flexible, reliable, content-driven & user-

friendly simulation tools where learning is key. These 

simulation tools, called XVR modules, reside in one XVR 

platform that allows for diverse and simultaneous learning 

at schools, training centres, emergency services and 

private industry & infrastructure. The XVR platform is 

used in both single- and multi-agency settings for 

education, training and assessment. 

The key driver for the XVR modules is that the 

instructor is in full control when designing scenarios and 

during training sessions. While this allows instructors to 

intervene on participants’ actions and, if desired, alter any 

scenario at run-time, it also poses a burden on them. The 

instructors are manually adjusting the scenario to provide 

the appropriate training context for the participants. For 

run-time scenario adaptations and responsiveness to 

unforeseen or varying participants’ actions there is a need 

to provide support for the instructor, to alleviate the 

manual burden of scrolling, selecting, changing properties 

and assigning tasks and/or actions. Furthermore, the 

instructors face an increasing workload with the inclusion 

of large simulated crowds and the trend in larger-scale 

scenarios and training sessions with a larger number of 

participants. Key is to reduce the number of distractions 

for the instructors, so that their focus can remain on the 

didactical objectives, the participants and their progression 

through the scenario. 

XVR Simulation has set out to investigate the use of 

Artificial Intelligence (AI) techniques to reduce the 

instructors’ workload. The objective of this investigation 

is to understand: how to introduce autonomous behaviour 

that (a) the instructors can understand, that (b) can handle 

interventions by instructors during a training session, and 

(c) is easily defined by the instructors when defining 

scenarios. 

2 Current State 

Within the XVR platform, the concepts described in table 

1 are used. 

Table 1. XVR platform concepts 

Scenario 
an environment with a collection of items 

and tasks 

Environment 
a plane of reference in which items are 

placed: the virtual 3D world 

Item 

any tangible entity with a visualization 

that can be placed in an environment: a 

car, a fire hose, an extinguisher, etc 

Avatar an item which represents a human figure 

Crowd 
a collection of avatars that appears to be a 

group 

Action 

a simple, user-configured, atomic 

manipulation of an item’s generic and/or 

specific properties, such as move to, hide, 

embark in vehicle, teleport, or increase 

fire intensity 

Task 

a user-defined parameterised sequence of 

actions that can be invoked on selected 

items. 
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The instructor must, during the training, determine 

appropriate ways to manipulate items, so that the 

participant perceives reactions on their (in)actions. Often 

instructors’ activities during a training session are: 

• Modifying items properties: hide/unhide items, 

move an avatar, embark an avatar in a vehicle, 

increase fire intensity, et cetera; 

• Pause or completely stop the simulation clock, 

which pauses all activities (both visual and task 

related); 

• Insert new items in the scenario, in response to a 

participant’s request for additional support; 

• Invoke tasks on (pre)selected items, so that these 

items work in concert. For example, have all 

firemen embark their vehicle, drive to the 

designated location, disembark, grab the 

appropriate equipment and start to extinguish a 

selected fire. Note that the instructor can decide 

whether a fire is extinguished or increases in 

intensity: the instructor is in full control. 

An example scenario an instructor is involved in could 

be a rioting crowd in a small city, where the crowd may 

behave neutrally or aggressively. The participant, e.g. a 

riot police commander, is to be trained on handling of the 

crowd, including the possible dispersion of that crowd. 
Figure 1 refers to the aforementioned scenario and 

zooms in on the interaction with two avatars. One avatar is 

a rioter, while the other avatar is a riot control officer. The 

figure focuses on the commands of the participant that 

causes the riot control officer to approach the rioter. The 

instructor must both execute the movement of the riot 

control officer coming closer to the rioter, as well as decide 

on, and give the instructions for, the rioter to run away 

from that police officer. 

 
Fig. 1. Instructor manipulation inside current XVR module. 

In column A, the instructor manually controls all 

properties and functionality in real-time. When specifying 

the scenario, only the 2 avatars need to be created. During 

the training session, the activities are: the riot control 

officer moves forward, change rioter avatar animation to 

fearful, move rioter to destination away from the riot 

control officer. 

In column B, the instructor can use tasks for the same 

behaviour. Again, both avatars need to be present at 

specification of the scenario and a task needs to be created 

with two parameters to let any selected avatar flee to a 

given destination. During the training session, the riot 

police officer should move towards the rioter (e.g. via a 

basic move-to-command given by the instructor). The 

instructor needs to execute the ‘flee’ task with parameters 

of the specific rioter avatar and a specific destination. 

Extrapolating these interactions to a rioting crowd 

results in an additional workload for the instructor. Either 

the instructor should manually select each individual 

avatar belonging to a crowd and issue a command (e.g., 

single avatar changes animation to fearful and runs 

towards destination X), or define and invoke a task for a 

group of avatars (e.g., execute ‘flee’ task for crowd A and 

destination X’). However, if a crowd needs to move 

differently than defined, e.g. to run away in multiple 

directions, this again requires manual assignment of 

actions and/or tasks. 

In sum, the instructor-driven approach to simulation 

and training has the advantage that the instructor is, indeed, 

in full control. The instructor decides on the learning 

experience, and thus has full flexibility to handle expected 

and unforeseen actions and commands from the 

participants. The downside is that ‘full control’ comes with 

the burden of having to control everything. Although tasks 

allow for automation of actions, tasks are difficult to adjust 

during a training session and are difficult to define for all 

possible participant actions. 

3 Design 

It is undesirable that the introduction of AI techniques 

results in the removal of this fine-grained control from the 

instructor. Rather, these techniques should ideally expand 

on the current control and assist whenever the instructor 

handles (too) many property and functionality changes in 

a given timeframe. This notion is exemplified in figure 2, 

which outlines the workload for instructors with the 

autonomous behaviour. 

 
Fig. 2. Addition to the instructor manipulation using 

autonomous behaviour. 

To illustrate this expansion of current control, the 

instructor interaction, with the example scenario described 

in the current state, is expanded with a new column 

introducing the use of brains. 
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In column C, the expected result of AI support is 

depicted. During specification of the scenario, the two 

avatars are placed in the virtual environment, a ‘flee’ task 

is created and a brain with flee behaviour is assigned to the 

rioter avatar. During the training session, the riot police 

officer only needs to be moved towards the rioter. The rest 

of the behaviour of the rioter is automatically handled by 

the brain, which uses the ‘flee’ task with the correct 

parameters. 

The approach chosen by XVR Simulation is to 

integrate the brains in the context of the instructor. In 

addition, the choice has been to make the instructor’s 

context leading. The instructor’s context includes concepts 

related to didactical objectives, scenario-annotations, tasks 

and other considerations. The approach taken is that 

sensors of each brain are defined in terms of scenario-

concepts. These include not only locations of items, but 

also annotations such as danger-zone, safety-zone, injury-

zone, et cetera. The instructor has the ability to add or 

remove sensors and change the properties of these sensors 

in a manner similar to what the instructor is used to, for all 

item manipulations inside the scenario. 

The actuators of each brain are defined in terms of 

tasks. Although a task may be the same as an (atomic) 

action (e.g., ‘hide item’ or ‘walk to destination X’), in 

general tasks are more complicated. A typical ‘flee’ task 

could, for instance be: change animation to panicking, 

move with 10 km/hr to a safe destination and once arrived, 

change to a hide-behind-cover animation. The tasks that 

serve as actuators can be completely created by the 

instructor, as long as these adhere to the pre-defined 

parameters that the brain expects. This allows the 

instructor to define any specific actuator for any specific 

scenario (e.g. in scenario A the flee task can be defined to 

frantically run away, and in scenario B it can be defined to 

move cautiously). The decision-making capacity of each 

brain is to decide which task to execute with which set of 

parameters. 

Another concept needed for the shared mental model is 

behaviour. This concept refers to a certain decision-

making capability given sensor information resulting in 

execution of (complex) actuators. Examples are 

‘aggressiveness towards riot police’, or ‘fleeing from 

danger’, or ‘wandering around’. By exposing ‘behaviour’ 

as a concept for understanding and interaction among 

instructor and brains, it becomes possible for an instructor 

to provide interventions that act on a brain: activate or stop 

a ‘behaviour’, at runtime include a new ‘behaviour’, et 

cetera. Similarly, a brain can report on its internal 

workings by reporting on its active ‘behaviour(s)’ and 

possible trade-offs in deciding among conflicting 

‘behaviours’, thereby exposing some of its internal 

workings for an instructor as feedback. 

The approach described above provides the directions 

to build an information mapping for the instructor and the 

brains. As the XVR modules also provide the graphical 

user interface through which the instructor interacts with 

the brains, the information mapping is defined for the XVR 

module and external AI tooling. The expectation is that 

this information mapping is closest to an instructor’s 

understanding and expectations of autonomous behaviour. 

4 Integration 

The XVR platform is built on a sound architectural 

foundation which imposes additional requirements on the 

inclusion of any new technology. Regarding the inclusion 

of autonomous behaviour for items in the virtual world, a 

clear separation of body and brain is required. With this 

distinction, any item can be the ‘body’ governed by a 

brain. The brain then remains a concept outside of the item, 

maintained by an AI module/tool that facilitates sensor 

input, reasoning algorithms and actuators to create 

autonomous behaviour. 

DirectAI [1] is a product of MASA Group [2]. 

DirectAI is a software engine configured by behaviour 

designers and used to integrate decision processes in 

simulation agents. A DirectAI brain implements an ‘action 

selection policy’ for an agent, based on sensory input, 

drives and representations. This action selection policy is 

represented in a node hierarchy, consisting of two layers: 

1. The ‘decision layer’ propagating decisional 

information to the action layer; 

2. The ‘action layer’ outputting the most adapted 

action according to the current situation. 

This underlying concept of a DirectAI brain closely 

meets the requirements of the XVR platform and allows 

for the separation of ‘brain’ (handled by DirectAI) and 

‘body’ (handled by the XVR module). The DirectAI brains 

are supported by the DirectAI runtime environment. This 

runtime environment needs a coupling with the XVR 

module via the XVR platform. The integration between 

these components is depicted in figure 3. 

 

 
Fig. 3. Integration diagram between XVR platform and 

DirectAI. 

The information mapping is split into two halves: the 

lowest half (in dark orange) is the integration layer, which 

exposes XVR module information to and from any 

DirectAI brain. The upper half (in light grey) is the 

information mapping where XVR information is 

interpreted into information and concepts that are of use in 

the brains’ specifications. 

Given this direct dependency between the brains’ 

specifications and the information mapping with the XVR 

platform, it is beyond an instructor’s capacity to modify 

these specifications. It may result in unexpected failures 

and instability of the XVR module and/or DirectAI 
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runtime environment. Rather, behaviour experts from 

XVR Simulation and selected partners are specialised in 

crafting the brains’ specifications. These specifications are 

parameterised and are dependent on specific sensors and 

actuators. The sensors and actuators (being part of the 

context of the instructor; e.g. danger zone and a defined 

‘flee’ task) are easily configurable by instructors. During a 

training session, it is commonplace that tasks fail to 

execute to completion, e.g. through interventions of other 

tasks, participants or instructors. 

5 Discussion 

The chosen AI technology, DirectAI, has been integrated 

with the XVR platform in accordance with the approach 

described above. As a result, a number of concepts are 

defined in addition to the existing concepts of the XVR 

platform. This shows that the introduction of autonomous 

behaviour does not alter the product’s original concepts 

and functionality and provides stability for the instructors 

understanding of the XVR modules. 

The integration of the brains with the XVR platform 

results in bounded flexibility for adapting brains by 

instructors. An instructor cannot be expected to modify the 

information mapping or behaviour specification of a brain: 

this requires highly specialised expertise including 

extensive testing to assure brains and behaviours of high 

quality that do not jeopardize the XVR module and 

DirectAI runtime environment’s stability. An instructor 

can reconfigure brains, by switching behaviours on and 

off, parameterising behaviours and (re)defining sensors as 

well as actuators that are used by brains. 

The result of including autonomous behaviour in the 

XVR platform in this way is that the instructor remains in 

control. Figure 4 shows on the left side the original 

situation, where the instructor can directly control an item, 

or use a task to control an item. With the introduction of 

brains, the instructor can also delegate some control to 

brains and be in control over the brains as well. The brains 

are in control of tasks, not of the items directly, allowing 

for the instructor to regain control easier when needed. 

 
Fig. 4. Instructor remaining in control including 

autonomous behaviour. 

6 Conclusion 

This paper describes the solution XVR Simulation chose 

with the objective of adding autonomous behaviour in 

support of instructors inside a scenario-based training 

simulator. The main challenge is summarised as including 

autonomous behaviour in a fully instructor-defined and 

run-time customisable training simulator. The DirectAI 

technology from MASA Group has been integrated into 

the XVR paradigm and the XVR platform, resulting in: 

• an instructor understanding autonomous 

behaviour of a brain during scenario specification 

and scenario training. The shared mental model 

between instructor and brains is based on scenario-

concepts already known to and defined by the 

instructor, 

• an instructor’s possibility to intervene in the 

autonomous behaviour of a brain during scenario 

training, 

• an instructor defining and altering the autonomous 

behaviour of a brain by simple configuration of the 

behaviours inside the brain, setup of sensors inside 

the training scenario and definition of the actuators 

represented as tasks. 

Furthermore, the inclusion of the autonomous 

behaviour is shown to be an extension of the current 

concepts, thereby easing customer acceptance and 

ensuring the scalability of the solution inside the XVR 

platform. 
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