

Flight Test for Simulator Development

Regine Pattermann, Head of Flight Test, RS Flight Systems GmbH

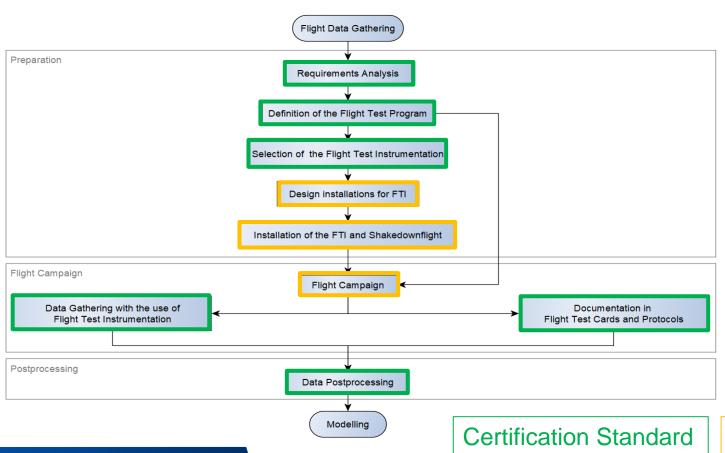
Flight Data Gathering for Simulation Purpose

Reiser Simulation and Training is a manufacturer of Full Flight Simulators Level D, mainly for rotary wing. RS Flightsystems GmbH provides flight data, that is used for development.

Flight Dynamic Model

Qualification

The approach for flight data gathering and challenges of such projects are the topic of this presentation.


Index

- Approach during Flight Data Gathering
 - 1. General Process
 - 2. Flight Test Program
 - 3. Flight Test Instrumentation
 - 4. Flight Test Campaign
- 2. Main requirements in flight data gathering
 - 1. Safety
 - 2. Quality
 - 3. Efficiency
- 3. Examples of cross coupling effects
 - 1. Angle of Attack & Angle of Sideslip at low airspeeds
 - 2. The process of data review
 - 3. Crew communication
 - 4. Defined control step inputs
- 4. Summary and Outlook

Process of Flight Data Gathering

Flight Test Program

General contents

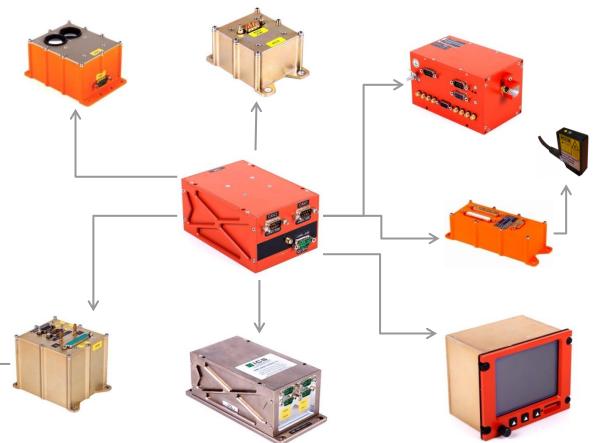
- List of planned test points
- Aircraft configuration description
- Test site
- Crew
- ...

Simulator specific contents

- Compliance with Simulator Certification Standard i.e. CS-FSTD(A)
- Definition of aircraft weight configuration
- Progress tracking and data storage and processing

Simulator Certification Standard

TESTS	TOLERANCE	FLIGHT CONDITIONS	FSTD LEVEL									COMMENTS	
			FFS			FTD		FNPT		BITD			
·			Α	В	С	D	Init	Rec	1	Ш	мсс		
(4) Normal take-off.	± 3 kts airspeed ± 1·5º pitch angle ± 1·5º AOA ± 6 m (20 ft) height	Take-off	C T &	~	*	~							Data required for near maximum certificated take-off weight at mid centre of gravity and light take-off weight at an aft centre of gravity.
	For aeroplanes with reversible flight control systems: ± 10% or ± 2·2 daN (5 lb) column force		М										If the aeroplane has more than one certificated take-off configuration, a different configuration should be used for each weight. Record take-off profile from brake release to at least 61 m (200 ft) AGL.
					 - 	 				 	 - 		May be used for ground acceleration time and distance 1.b(1).
													Plotted data should be shown using appropriate scales for each portion of the manoeuvre.

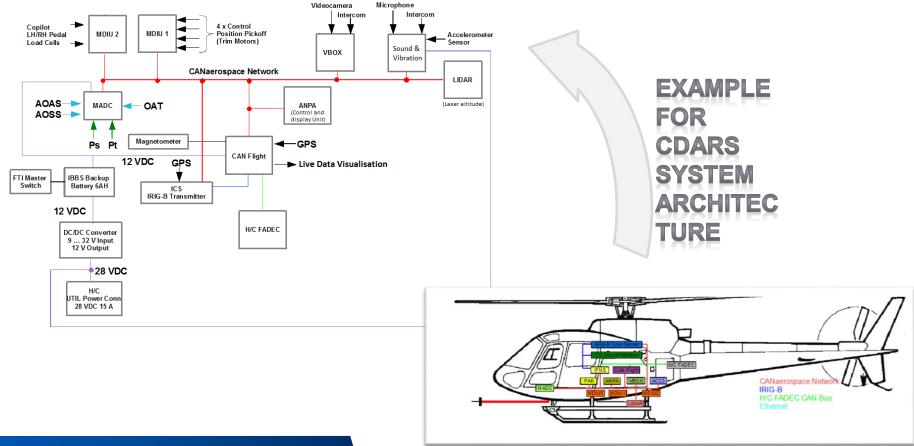

CS-FSTD(A) Issue 2

Flight Test Instrumentation

Modular System Architecture:

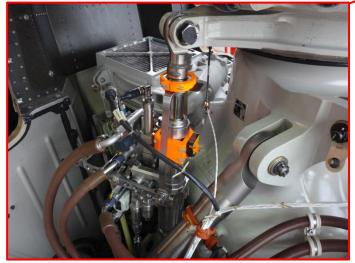
- Air data
- AOA & AOS
- IMU
- Radar Altitude
- Control positions
- Control forces
- Sound data
- Vibration data
- Engine Data

Flight Test Instrumentation


FTI-Rack:

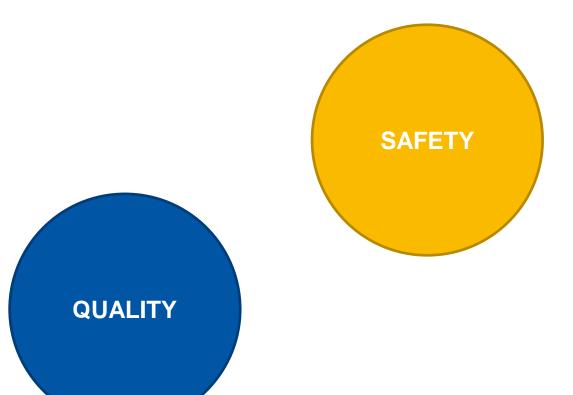
- Core-unit of the FTI
- Hosts most components of the flight test instrumentation
- Annunciator Panel
- Circuit Breakers
- Easy and safe installation

Flight Test Instrumentation



FTI Installation Example

Control Input Measurement


Laser Sensor Technology

Main Requirements on Flight Data Gathering

Safety during Flight Data Gathering

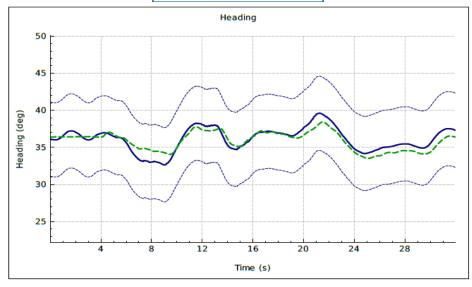
Flight Test for Aircraft Certification

Flight Data Gathering for Simulator Development

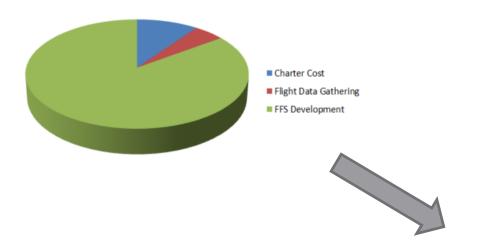
- Safety is the main topic during flight test
- Data recording is a support for proof or detailed analysis after flight

- Data recording is the main purpose
- All flights within the envelope automatically safe?

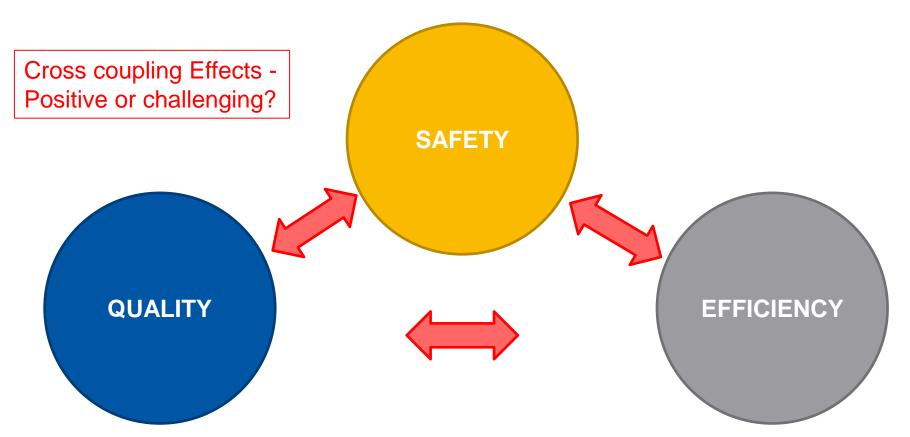
Quality in Flight Data Gathering


Certification Standard i.e. CS-FSTD(H)

Model requirements


Quality Requirements

Efficiency in Flight Data Gathering


High Charter Cost → Financial challange

- Clever workshare and processes have to be defined
- Tools can support and relieve from workload
- Shorten Charter period and flights to a minimum

Main Requirements on Flight Data Gathering



Compromise between Safety and Quality

RS FLIGHT SYSTEMS

AOA & AOS at low airspeed

Quality ↔ Safety

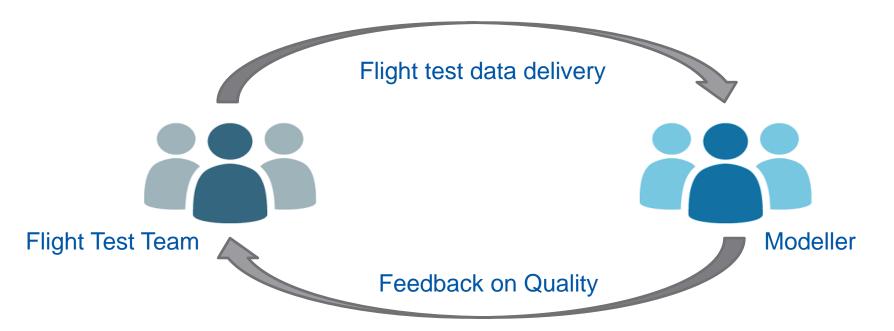
Flightlog on Noseboom:

- AOA
- AOS
- Pitot-static tube

Compromise between Safety and Quality

AOA & AOS at low airspeed

AFLS during take-off



Support of quality via increased efficiency

Process of data review

Support of quality via increased efficiency

Process of data review

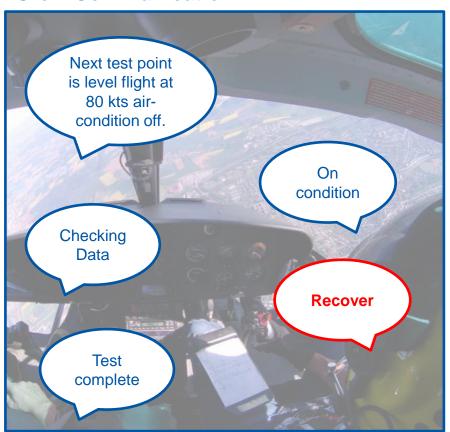
How can we increase efficiency?

Provide data to the modeller in their desired format

Automated Data Handling Process

Manual Steps:

- Set event button to mark start and end of manoeuvre in flight
- Write flight test cards (digital)

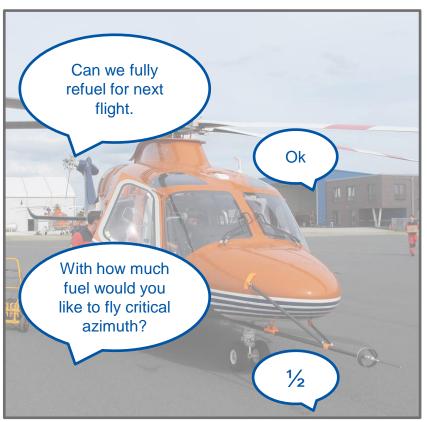

Automated steps:

- Postprocess raw format
- Cut data to manoeuvres
- Create correlating data base

Improved Safety leading to better Quality

RS FLIGHT SYSTEMS

Crew Communication

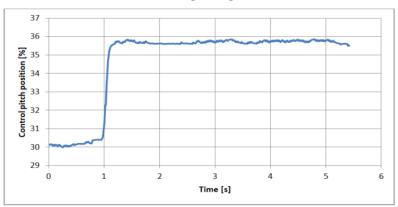

In Flight:

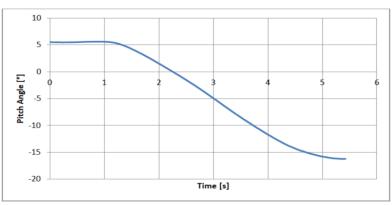
- Well prepared prior to campaign
- Wording adapted to checklist procedures of normal operation
- Reflects roles and responsibilities
- Well structured communication leads to improved data quality

Improved Safety leading to better Quality

RS FLIGHT SYSTEMS

Crew Communication




On Ground:

- No predefined communication
- Conscious selection of the wording required
- Possible consequences for flight safety

Achieving higher efficiency and quality with assured safety

Defined control step inputs

Control step inputs:

- > Steady initial state
- Clean control input in only one direction
- Helicopter reaction often fast and possibly hazardous

Achieving higher efficiency and quality with assured safety

Defined control step inputs

Quality aspects:

- Step input fast
- No overshoots
- ➤ No drift after input

Achieving higher efficiency and quality but safe

RS FLIGHT SYSTEMS

Defined control step inputs

Control fixture use in Hover

Achieving higher efficiency and quality but safe

Defined control step inputs

Safety aspects:

- > Training:
 - 1. Explain principle on ground
 - 2. Procedure Training on ground
 - 3. Training in a simulator
 - 4. Training in a flight not dedicated to step inputs
- Procedures and wording
- Helicopter reaction often not known
 - ➤ In Hover: select a high altitude above landing area
 - Start with very small inputs maybe even without control fixture
 - > Agree on maximum angles prior to a flight

Achieving higher efficiency and quality but safe

Defined control step inputs

Higher input quality

Quality

Efficiency

Quickly achievable Efficiency

Safety

Safety has to remain always the high level requirement

Summary and Outlook

Summary:

- Approach of specific data gathering is beneficial for simulator development
- Flight data gathering has its own challenges compared to flight testing

Cross effects between the three main requirements are complex

Outlook:

- Study to evaluate positive effects possibly in cooperation with a research institute
- Make use of developments from a big variety of flight tests with different purpose
- Further optimization with tools and adapted processes

