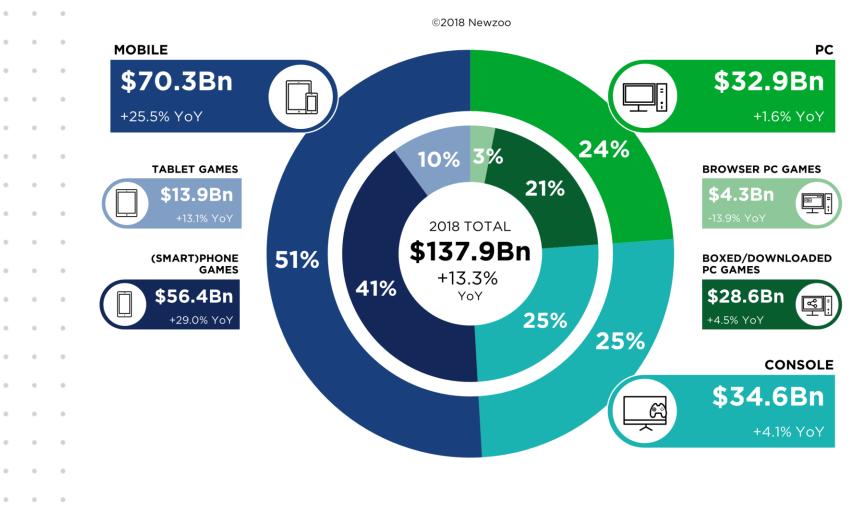
1.1.1.1																							
////																							
11/1																							
1////																							
(////																							
/////																							
////																							
////																							
1////																							
(///)																							
1111																							
n 10 m m 6																							

Delivering Next Generation Simulation Today Convergence Through Cloud Technologies

- Gaming Market Scale
- The Pace of Technology
- Modularity
- Emerging Requirements for Next-Gen, Cloud-Enabled Simulation
- Whole Earth Game Engines
- The Cloud
- Challenges
- Summary & Questions



• • • **2018 GLOBAL GAMES MARKET** PER DEVICE & SEGMENT WITH YEAR-ON-YEAR GROWTH RATES

newzoo

•

.

.

0

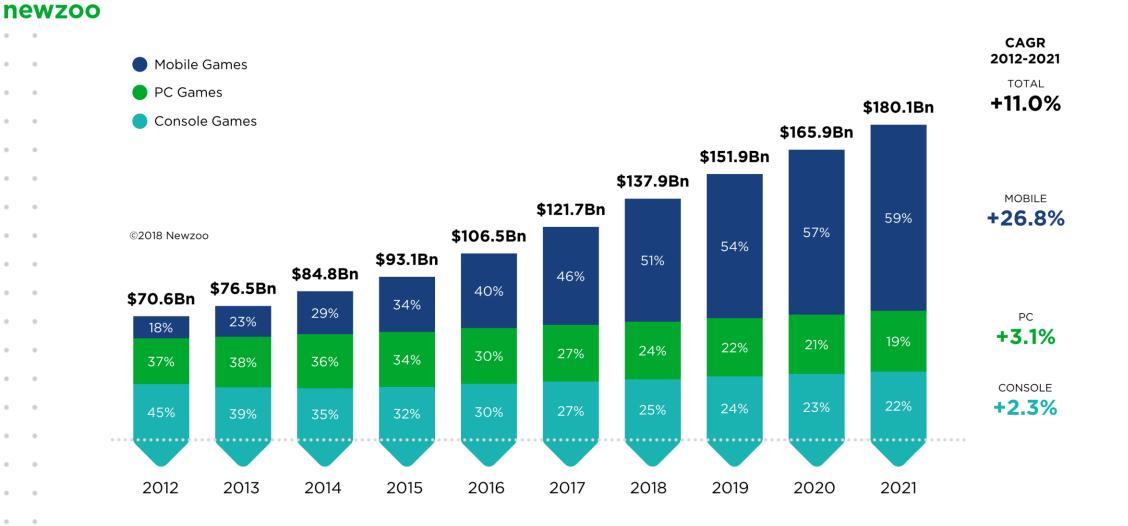
2012-2021 GLOBAL GAMES MARKET

REVENUES PER SEGMENT 2012-2021 WITH COMPOUND ANNUAL GROWTH RATES

.0

.

.0


......

.

.

.

. 0

Source: ©Newzoo | April 2018 Quarterly Update | Global Games Market Report

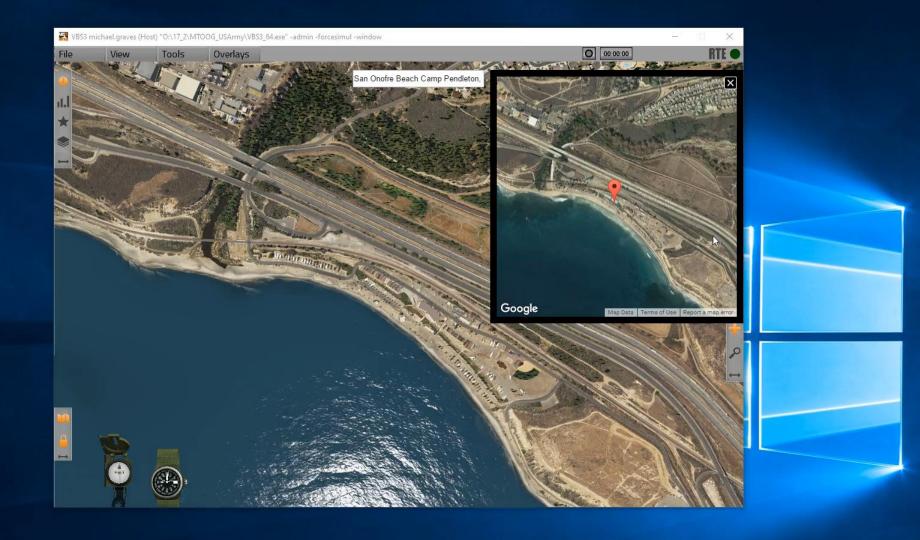
newzoo.com/globalgamesreport

. 0

. .

.


- The levels of investment in gaming and the speed of development required to consistently release has increased levels of modularity.
- Gereasingly are expected to support user modification and development to increase longevity, this further increases the drive to modularity.
- The modular nature of game technology can help "future proof" future simulation deployments, reducing the cost of implementing best-of-breed technology in the future.
- Ultimately, component-based upgrades should be possible even replacing the core "game engine".



- Implementing modular game technology and broader (non-defense) industry standards will allow military organizations to more easily leverage the latest and greatest, and stimulate innovation.
- Interoperability at individual application level can be achieved through **Gears**, a software development framework that defines a standard way for components to communicate through formal interfaces.
- Gears simply uses tools and approaches common to modern web development, where all software easily connect with each other by connecting DLLs (Dynamic Linked Libraries).
 - Modular software design has been around for many years. Dynamic Linked Libraries (.dll files) are a common part of any Windowsbased software application.
 - A dynamic linked library is compiled source code that provides some function or capability, which connects to an application via an API.
 - Gears is simply a way to more easily connect many dynamic linked libraries, to increase programming effectiveness and efficiency.

www.gears.studio

Simplify and Standardize Your Software Development Process

Download Gears Studio Community Edition

What is Gears?

Gears is a software development framework that defines a standard way for components to communicate through formal interfaces.

Gears uses a component-based architecture to promote rapid development by building applications from self-contained systems and having them communicate via formally defined interfaces. This allows functionality to be reused and avoids the complexity of tightly coupled systems.

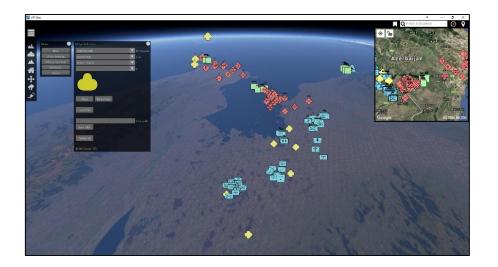
Gears Studio Overview

Gears Studio is a development environment to facilitate the development of products, components, and APIs within a framework intended to avoid common pitfalls and to automate common tasks encountered in software development.

- Gaming technologies especially those that leverage the Cloud offer an unprecedented opportunity to *scale* simulation
- At least three premier militaries are considering Cloud deployment in future procurements:
 - United States Army ("Synthetic Training Environment" or "STE")
 - United Kingdom Ministry of Defence ("Collective Training Transformation Programme")
 - Australian Army ("Land Simulation Core 2.0").
- The US Army STE program clearly articulates a need to "converge" virtual and constructive simulation, and deliver a holistic "One World Terrain" to the point of need, via the Cloud

Note: The appearance of U.S. Department of Defense (DoD) visual information does not imply or constitute DoD endorsement.

The following requirements are emerging among premier Western military forces.


 Common, whole-Earth terrain representation Solves correlation issues between different simulation systems 	 Cloud-enabled Centralizing simulation capability "One button" to start simulated training exercises
 Connectivity to the point of need In-theatre forces training with those at home Real-time terrain updates from in-theatre 	 Unprecedented scale Millions of simulated entities "Massively multiplayer"
 Persistent virtual world A persistent simulation of large regions of the Earth with cause and effect Support for "non-kinetic" simulation 	 Convergence of virtual and constructive sim Soldiers and commanders training simultaneously Seamless aggregation and disaggregation of entities depending on the training need
 Aggregation of performance data All training systems should connect to a common LMS, facilitating Army-wide performance measurement and machine learning (ML) 	 Exploit Machine Learning ML informing changes to training scenarios based on human performance ML for improved artificial intelligence

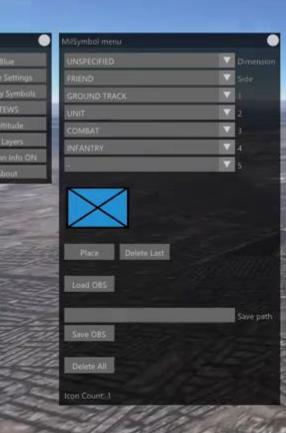
Ð

BISim and "Whole Earth Simulation" – A Brief History

- We began developing "whole earth rendering" tech in 2013 using IR&D exclusively VBS Blue.
- We started doing funded R&D in 2017, prototyping "whole earth" concepts in VBS Blue. We developed multiple distinct demonstrations/technologies related to One World Terrain (OWT).
- VBS Geo, a prototyping application based on VBS Blue, was demonstrated by the U.S. Army at the STE Industry Day and I/ITSEC 2017.
- The following videos show our early work PMESII layers in the prototype, and VR terrain editing.

₩.

4


*

*

+

- Whole-earth engines like our own "VBS Blue" use cube-mapping techniques to render realistic scenes (with realistic view distances) at any altitude.
- Many modern computer games use similar techniques to deliver "whole planet" experiences...

Emerging requirements in programs such as STE are shaping the BISim technology roadmap...

- VBS Blue whole-earth game engine
- STE World Server for whole-earth paging terrain
- VBS Control AI framework

Ð

Support for both Cloud scalability and Cloud deployment

Copyright © 2019 Bohemia Interactive Simulations

All other trademarks or copyrights are the property of their respective owners. All Rights Reserved.

- Cloud technologies are already in heavy use for current games
- Geric Games commonly use the cloud to support gaming infrastructure such as matchmaking, user profiles and game servers.
- Cloud technologies have been utilised more outside of gaming for Big Data analysis and processing intensive tasks.
- Projects like Google Stadia aim to utilise the capability of the cloud to deliver high end gaming experiences to customers directly.
- As games continue to grow in scale and complexity the capabilities of the cloud are becoming increasingly attractive to game developers.

Ð

Ð

Ð

These new requirements are very challenging!

STE (for example) needs to be rolled out to a massive number of U.S. Army simulation systems.

- Likely to cost millions of \$ in integration costs for each system (e.g. CCTT, AVCATT, CFFT).
- Networks will need to be re-architected to integrate with OWT.
- Integration with live training / operations is also critical further increasing bandwidth requirements

Traditional interoperability standards don't readily transfer to the cloud.

- DIS (and other multicast protocols) weren't designed for WAN operation.
- HLA requires expert knowledge and expensive technology (e.g. RTIs).

Cloud technologies are relatively new to the military.

- Security concerns
- Bandwidth concerns (e.g. 10-15mbps required for pixel-streamed graphics, per 1080p channel)
- Cost concerns (e.g. virtualizing a graphics card is still expensive!)
- Fears of being locked into an infrastructure which is pay-per-use

There is a desire to leverage game technology, but a lack of understanding how to employ it...

- Government desires ownership of source code, but still wants to leverage the best the game industry has to offer
- Rendering whole-earth terrain, representing whole-earth roads, rivers, bridges, buildings, etc., is not supported by many engines.

Ð

- "Game Technology" is vast and *could* offer higher fidelity or cost effectiveness compared to traditional approaches, depending on the training need!
 - Game "middleware" supports modularity
 - Cloud-based technology behind games like Worlds Adrift could accelerate STE
- Projects like STE are highly ambitious and remain a moving target. However the opportunities are many (for both Government *and* Industry), revolutionizing the way simulation is used in training.
- Modern industry open standards and technologies can address the challenges, and encourage innovation.
- *G* Future approaches must be completely open any simulation can interface through open APIs
 - Gears encourages software reuse.

