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Understanding how AI is applied in training: Case Studies  

Abstract — “Artificial Intelligence” (AI) refers to technologies that emulate human intelligence, but the term is so 

broad that it is often hard to tell what is meant by it, how it is applied, and what value it brings. This presents a serious 

problem for those attempting to understand and evaluate the use of AI in training. This paper, which draws on work of 

the IEEE standards committee on Adaptive Instructional Systems, sheds some light on this murky area. The paper 

presents a framework for understanding the use of AI that clarifies inputs, outputs, the type of AI used (if any), and 

whether it is used to classify objects, provide recommendations, support simulations, or make decisions. The paper 

then illustrates the framework by applying it to use cases ranging from recommendation engines to simulations to 

systems that use AI to support the analysis and generation of training content. 

1 Motivation 

Artificial Intelligence (AI) is experiencing a renaissance 

due to the success of deep learning and the emergence of 

products such as IBM Watson, but this renaissance has led 

to overuse (and possibly abuse) of the term “AI” in 

marketing literature and capabilities descriptions. The 

fields of training and education are no exceptions. AI is 

used effectively in many systems that make personalized 

recommendations of learning activities and that adapt the 

learning to the state of the learner [1] [2], but it is difficult 

to interpret statements such as “increase performance up 

to 50% with an AI-Driven Knowledge Cloud” [3] and “AI-

powered knowledge technology makes training, 

development, and knowledge management more engaging, 

autonomous, intelligent, and effective than ever before” 

[4]. Users, consumers, policy makers, and researchers 

need ways to understand what types of AI are used in 

training products, how they are applied, and how to 

evaluate their impact and training efficacy – preferably 

without requiring them to be experts in AI – while the 

manufacturers of training technologies that personalize or 

individualize instruction [5] have a vested interest in 

reducing the marketplace confusion that exists today and 

that has slowed the adoption of training AIS despite their 

potential to produce positive learning gains [6].  

For the above reasons, the issue of how AI is used in 

adaptive instructional systems (AIS) is being addressed as 

part of a standardization effort taking place under the 

auspices of the IEEE Learning Technology Standards 

Committee (IEEE LTSC) [7]. This effort plans to produce 

technical interoperability standards, but its first project 

involves classifying AIS for the benefit of consumers, 

producers, and purchasers and another project involves 

recommended practices for evaluating AIS. This paper 

presents work contributed by the author to these efforts and 

applies it to a variety of use cases.  

2 Types of AI: Rules versus Machine Learning 

The Oxford dictionary defines AI as “the theory and 

development of computer systems able to perform tasks 

normally requiring human intelligence, such as visual 

perception, speech recognition, decision-making, and 

translation between languages” [8]. This definition 

closely parallels that given in early books on the subjects 

[9]. IBM Watson gives a more current definition of AI as 

“anything that makes machines act more intelligently, 

including basic and applied research in machine learning, 

deep question answering, search and planning, knowledge 

representation, and cognitive architectures” [10].  

Paraphrasing Arthur C. Clarke’s third law [11], these 

definitions imply that any sufficiently advanced machine 

behaviour is indistinguishable from AI. This presents a 

dilemma since it is not uncommon for computer-based 

education and training systems to incorporate decision 

trees and rule engines that produce intelligence-mimicking 

behaviours, e.g., that make branching decisions based on 

assessment results or that recommend activities based on 

triggers and learner states. Although these algorithms 

create adaptive behaviours, they are deterministic and will 

always give the same output in response to the same input. 

As such they differ sharply from machine learning (ML) 

algorithms that learn what decisions to make and what 

actions to take from data and that can evolve with use.  

ML can be more flexible, dynamic, and powerful than 

rules engines, which is often desirable, but at the same time 

ML can introduce unseen and unintended bias. Such bias 

can lie in the data used to train an algorithm, the algorithm 

itself, or in how an algorithm is applied. Transparency and 

explicability have become major themes in AI and are 

among the principles of ethically-aligned design [12]. In 

the proposed framework, components of an AIS are 

classified according to whether they are rule-based or ML-

based, and analysts are encouraged to determine to what 

extent they work as intended, respect data privacy rights, 

and are free from (or explicit about) inherent bias.  

3 Uses of AI: Decide versus Classify 

In AIS, AI (whether rule-based or ML-based) is used in a 

limited number of ways. One set of uses involves 

determining or recommending the next topic, action, 

learning activity, or learning path for the learner or the 

system. In the proposed framework, these are called 

decisions.  When consumers hear that a system is AI-

based, they are likely to assume that the system uses AI to 

make decisions. However, in many systems AI is also used 

to generate the data on which the decisions are based. 

Examples of this include using algorithms to determine the 

knowledge, skills, aptitudes, affective state, and similar 

characteristics of a learner; to analyse and classify the 

attributes of learning resources and learning activities; to 
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grade performance on assessments; and to determine the 

relevance, novelty, correctness, and other attributes of 

written or verbal responses. In the proposed framework, 

these uses of AI – which may involve rules, ML, and 

natural language processing (NLP) – are called 

classification because in almost all cases the goal is to 

classify the input data into a discrete set of categories or 

on a continuous scale. “Classify” is a passive action that 

produces data used by later algorithms, whereas “decide” 

is active and directs the learner or the system.  

The major dichotomy in the proposed framework is 

between classify and decide, and in reporting which of 

these roles is played by a given AIS component, the analyst 

is asked to also identify what techniques are used. Since 

some, such as Bayesian Knowledge Tracing [12] and 

Knowledge Space theory [13], are well-documented in the 

literature, and others are considered proprietary and not 

published, and since systems may use third-party packages 

or services (e.g. IBM Watson), the practical goal is to 

understand the depth and general character of the AI used.  

Another general use of AI in training systems is in 

interface components and “non-player characters” (NPC). 

These range from avatars in conversational tutors [13] to 

avatars, terrain, and NPC in simulation-based training and 

serious games. As indicated by the Wikipedia article on AI 

in video games [14], much of this is rule-based and term 

“AI” is often more of a marketing term than technology 

term, but in some cases NPCs adapt their expressions, 

language, and actions based on learner states and 

underlying learning science principles and play a crucial 

role in the personalization and individualization of the 

learning experience. In these cases, an analysis should 

include NPCs and other interface components in the list of 

AI-driven components of the AIS.  

Finally, there are many other uses of AI in training and 

education. Products such as Alexa and Google Home use 

AI to understand and respond to commands, and it is not 

unreasonable to expect that someday students will be able 

to ask such products for help them with their homework. 

ML algorithms could presumably be used to learn better 

models for class composition or for matching students to 

teachers, AI is embedded in educational robots [15], AI 

can be used to drive virtual, augmented, and mixed reality 

used in training and performance support, and AI can be 

used develop and apply models for assessing workers as 

they perform their jobs based on data generated by the 

equipment they operate. Although the framework in this 

paper can be applied to these instances, the focus here is 

specifically on AIS. 

4 Input Data 

AI, and especially ML, requires data. In AIS, these data 

can be grouped into four broad categories: 

1. Activity Stream Data: Learner interactions with 

activities and the results of those interactions. 

Standards such as xAPI [16] are designed to report 

activity stream data.  

2. Learner Data: The learner’s knowledge, skills, 

abilities, aptitudes, and other characteristics, 

potentially including affective state, biometric 

state, learning goals, and preferences. 

3. Activity Data: The content of learning activities 

and properties such as those described in the IEEE 

Learning Object Metadata standard [17].  

4. Domain Data: Data about the structure of the 

domain being training, often represented in the 

form of a topic map or competency model. 

These are data that serve as inputs into algorithms that 

either perform classifications or make decisions. The 

proposed framework identifies these data, which is 

important for understanding the operation and limitations 

of the training system and for identifying potential issues 

concerning the governance of learner data, especially in 

educational settings.  

The input data is meant to be data that comes from 

sources external to the system itself, including the learner, 

but in many cases internal algorithms use the results of 

other internal algorithms as input. For example, a 

combination of ML and NLP may be used to auto-classify 

the Bloom’s levels topics, or educational alignment of a 

learning activity (see, e.g. [18]), all of which may be used 

in making recommendations. In the proposed framework, 

this is indicated by identifying the external data used by 

the classification algorithms and showing that the results 

are fed forward into the recommendation component. 

Since ML algorithms need data to be trained, an 

understanding of how much data is required can be crucial 

and should be analysed if possible, not only in terms of the 

total data required but also in terms of the balance among 

the number of learners, the amount of data produced by 

each learner, and the length of time over which data is 

produced. If a system is delivered “pre-trained,” then this 

may be less important but can serve as a reality check. 

Typically, the amount of data required to train ML-based 

classifiers and decision algorithms is at least measured in 

Gigabytes (GB), and if a system could not have been 

exposed to data sets of that size, then any claims of 

intelligence should be assumed to be rule-based or treated 

with healthy scepticism.  

5 The Framework 

As indicated by the preceding sections, the proposed 

framework for analysing the uses of AI in an AIS consists 

of identifying the major components that involve AI for 

personalization or individualization and, for each such 

component identifying: 

1. the input data used; 

2. whether the component uses rules or ML (and any 

known techniques or algorithms used);  

3. whether the component decides or classifies; and  
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4. how data are fed forward among the components.  

This can be visually summarized by representing each 

component on a diagram of the type shown in Fig. 1 with 

a short description of what each component does and 

indicating how data flows among them.  

 

Fig. 1: Visual Representation of the Framework 

A diagram of this nature suffices for many purposes but 

should be accompanied by a verbal description in which 

more detail can be provided. The next sections illustrate 

this using real-world AIS. 

6 Gooru’s Learning Navigator 

The first use case presented is a recommender system, 

called Learning Navigator developed by Gooru Learning 

[19]. Navigator is used by millions of students in K-12 and 

is being adopted for use in military training as part of the 

US Advanced Distributed Learning (ADL) initiative’s 

Total Learning Architecture (TLA) program [20]. 

Developed under the leadership of the former chief 

engineer for Google Research (who was also an engineer 

for Google Maps), Navigator aims to provide the 

equivalent of Google maps for learning. It does this by 

locating the learner within a multi-level competency 

framework and recommending a “route” from the learner’s 

current location to the learner’s desired location. The route 

consists of a series of learning activities that are catalogued 

by the system but that are not part of the system. In the 

Google maps analogy, the learning activities are the roads, 

stores, and houses that are not owned or maintained by 

Google but must be identified and understood by Google 

in order to recommend a route.  

Gooru is presented as the first example because the 

way the Gooru uses AI is somewhat counterintuitive. One 

might expect that Gooru contains a recommender that uses 

collaborative filtering or other ML-based methods. In fact, 

routing and re-routing decisions are made by an event-

condition-action table, i.e. a rules engine, that incorporates 

science of learning principles and that uses metadata about 

catalogued activities to make decisions. Gooru does use a 

lot of ML and NLP, but it uses it to generate the metadata! 

The metadata includes predictions about how often a 

student will acquire a given competency as a result of 

engaging in the activity and data, measures of engagement, 

associated misconceptions, and other pedagogical traits. 

These are computed from activity stream data, from the 

content of the activities, and in part from user ratings and 

recommendations.  

Fig. 2 is a graphical representation of Navigator that 

summarizes how AI is used in Navigator. This is meant to 

provide an overview and to be augmented by a more 

detailed report (not included here) that, since Navigator is 

open source and not proprietary, explains what algorithms 

are used and what rules are applied.  

 

Fig. 2: Visual Representation of AI in Navigator 

7 GIFT 

The second example in this paper is the Generalized 

Intelligent Framework for Tutoring, or GIFT, which is an 

open source platform for creating intelligent tutoring 

systems (ITS) developed by the US Army Research 

Laboratory under guidance from Dr. Robert Sottilare. 

Numerous papers have been published about GIFT, and 

the GIFT community holds an annual symposium to 

exchange research and applications related to GIFT. The 

reader is referred to the GIFT web site for references to 

this material [21]. 

 GIFT was designed around the “standard model” of 

an ITS that includes domain, learner (or student), expert, 

and pedagogical models with massive input from the ITS 

community. GIFT includes a domain module that uses an 

XML course file in which topics are hard-coded. The 

domain module determines what action GIFT will take 

based on learner state transitions. These, in turn, are tied to 

pre-defined instructional strategies that are hard-coded in 

a Domain Knowledge File (DKF). Data about the learner, 

such as attainment level (e.g. novice, journeyman, expert), 

media and delivery preferences, and motivation level, are 

managed by a learner module. These data often come from 

surveys but can also be derived from performance history 

and sensor input. Sensor input is a key part of GIFT, 

especially for non-cognitive and psychomotor domains 

such as marksmanship training or care under fire. Raw 

sensor data is managed in a sensor module that interprets 

sensor input into performance characterizations that are 

used to derive learner states. This interpretation is pre-

programmed using Java. Theoretically, the Java code 

could implement machine-learned algorithms, but in 

practice the transformation of sensor data into learner 

states is deterministic and rule-based. 

The final module in the standard release of GIFT is 

a pedagogical module that implements a model such as 

Merrill’s component display theory [22]. Merrill’s theory 

can be applied in GIFT using the “Engine for Management 

of Adaptive Pedagogy” (eMAP), but custom models can 

also be added. To apply a pedagogical model, pedagogical 

metadata must be added for each content object. This 
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metadata describes how content fits into the pedagogical 

and learner models.  

The combination of GIFT modules, content, sensor 

data, learner data, pedagogical models, and state 

transitions provide a flexible framework that can achieve 

multiple levels and types of adaptivity. However, without 

customization or alteration, these are rule-based and 

therefore relatively transparent compared to systems that 

use ML. Fig. 3 is a graphical representation of GIFT. 

  

A GIFT example that includes an ML component is the 

Psychomotor Skills Training Agent-based Authoring Tool 

(PSTAAT) developed by colleagues of the author. 

PSTAAT added an expert model to use in the evaluation 

of psychomotor task performance. This model was trained 

with bio-harness data from expert and novice performers 

using supervised learning. The resulting classifier layered 

a novel application of inverse reinforcement learning [23] 

to compare learner performance to the models and to 

inform the learner how to get closer to expert performance. 

Fig. 4 shows how the visual representation for GIFT is 

updated to include the use of ML in PSTAAT. 

 

Fig. 4: Visual Representation of AI in PSTAAT (a GIFT Variant) 

8 HUMAN INSTRUCTION  

Having looked at two computer-based AIS, it is useful 

to put these in context by applying the same framework to 

the original adaptive instructional systems, namely human 

instruction. The entire field of ITS and AIS was, in some 

sense, launched by Benjamin Bloom’s study of forms of 

instruction in which he determined that one-on-one 

tutoring showed a two-sigma effect size improvement over 

conventional instruction and posed the problem of 

achieving the same results with methods more practical 

than offering every student a private tutor [24]. ITS (and 

by extension AIS) are intended to provide the personalized 

and adaptive experience that is viewed as a critical causal 

component of the effect size observed by Bloom. Although 

several metanalyses of ITS conclude that they have a 

positive effect but that it is not close to two sigma [25], 

from an AI perspective a human instructor looks a lot like 

a relatively simple AIS with a very complicated set of 

inputs and even more complex classification and decision 

algorithms learned by the instructor. 

9 KNOWLEDGE-SPACE BASED SYSTEMS 

Several commercial AIS that are widely used in 

education, primarily in highly structured domains such as 

mathematics. Among the oldest of these is ALEKS, which 

is an acronym for Assessment and Learning in Knowledge 

Spaces. As explained in a study of the impact of ALEKS 

on an after-school math program [26], ALEKS uses a 

theoretical framework called Knowledge Space Theory 

[27] that is used to represent a student’s current knowledge 

state and zone of proximal development (ZPD) and has 

developed set of assessments ranging from 400 – 700 

problem types in a given subject and grade that, together 

with inferences learned from real-world data, can 

efficiently determine in which of several million 

knowledge states a student lies, usually on the basis of 25 

to 35 questions that are adaptively selected in series based 

on the results of previous questions. The relationship 

between ALEKS assessments and a student’s knowledge 

state are machine-learned from student results, while the 

underlying knowledge space is fixed. 

In papers about ALEKS, ALEKS is typically described 

as an AI-based ITS that uses knowledge space theory, but 

very little is said about where the AI lies, how it works, or 

what data was used to train it. Some of this is proprietary, 

and most studies focus on the effects of using ALEKS and 

on the user experience rather than on its construction, but 

without understanding the use of AI in ALEKS it is 

difficult to know whether its value lies in its algorithms, in 

the knowledge space it uses, in its user interface, in the 

assessments it has developed, or somewhere else. It is also 

hard to know where biases might be introduced and how 

broadly ALEKS can be applied, both of which are required 

if one is to follow the principles of ethically aligned design. 

Although it would be difficult to apply ALEKS to fields 

for which no assessments exist in ALEKS, a system like 

ALEKS is inappropriate for student populations whose 

characteristics do not match those used to train the 

underlying algorithms or whose goal is not to learn all of a 

subject but instead to learn specific parts that are relevant 

to a related course of study. 

In keeping with previous analyses, Fig. 6 is a visual 

representation of the use of AI in ALEKS. It is striking 

Fig. 5: Analogous Visual Representation of Human Instruction 

Fig. 3:Visual Representation of AI in GIFT 
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how much this representation looks like a simplified 

version of human instruction, with the difference that 

ALEKS is based solely on assessment results and uses a 

computer algorithm to recommend topics, whereas human 

instructors consider a larger set of inputs and have many 

more actions at their disposal.  

10 ElectronixTutor 

As a final example, we analyse a system that was 

funded by the US Office of Naval Research (ONR) in the 

context of a STEM Grand Challenge and that is described 

in the International Journal of STEM Education [28].  The 

subject of ElectronixTutor is electronics as taught to Navy 

trainees in A-school. A unique aspect of this system is that 

it combines multiple AIS, including ASSISTments, 

Autotutor, Dragoon, and BEETLE-II, each of which uses 

different methods for adaptation. Autotutor, for example, 

is a dialogue-based tutoring system that, in the variation 

used in ElectronixTutor, uses latent semantic analysis 

(LSA) to compare learner inputs to text that represents 

correct responses and misconceptions. It then categorizes 

a learner’s response and offers a pump (e.g., “Can you 

provide a bit more detail?”), a hint (e.g., What does Ohm’s 

law say about this?”), a prompt (e.g., “If you set the 

resistance to ten ohms in this circuit the current will be 

____?”) or feedback (e.g. “Nicely done!”). This is shown 

visually in Fig. 7. 

At the core of ElectronixTutor is a recommender 

system that determines what will be presented to the 

learner. This recommender operates at the level of 

knowledge components (KCs) [29], which can be thought 

of as indecomposable bits of knowledge, skills, or abilities 

related to a subject. These are organized into more 

traditional topics that a student sees, which themselves are 

structured based on pre-requisites and on difficulty. For 

example, “Ohm’s and Kirchhoff’s Law” is a pre-requisite 

of both “Series and Parallel Circuits” and “PN Junctions” 

in a series of increasingly difficult topics that eventual lead 

to the study of multi-stage and push-pull amplifiers.   

Each topic has associated learning resources (LR’s) 

that are presented by the different systems aggregated in 

ElectronixTutor. Items include a Topic Summary (e.g. text 

or video), Conversational Reasoning (AutoTutor), Circuit 

Reasoning (multiple-choice questions from Learnform, a 

BBN product), Model Building (Dragoon), Circuit Basics 

(multiple-choice questions from BEETLE), Electronic 

Laws (ASSISTments) and Navy Manual Readings (from 

the free Navy Electricity and Electronics Training Series) 

[30]. Each of these LRs could have several associated 

items, e.g. several multiple-choice questions. The 

recommender guides students through topics and LRs and 

presents items based on assessed mastery of KCs, although 

the students never see and are never told about the KCs. In 

reference to the Van Lehn model of an ITS [31], topics are 

the outer loop, LRs and items are a middle loop, and the 

inner loop for each LR and item is handled by the system 

that was invoked to present the item. AI is used within 

ElectronixTutor components in several ways – for 

example in AutoTutor as described above – but the 

underlying recommender system is an algorithm that 

considers the difficulty of KCs and topics, sequencing 

rules derived from curricular considerations, and measures 

of mastery derived from performance, shown in Fig. 8  

Comparing ElectronixTutor to Learning Navigator 

(Section 6), both gather data about learner performance at 

a granular level, bubble that up to coarser topic level, and 

recommend associated resources based on a programmed 

set of rules. Learning Navigator uses extensive ML and 

NLP methods to curate the resources. The ElectronixTutor 

project also used data from Mechanical Turk to estimate 

difficulty levels and used reading time measures from the 

Coh-Metrix system developed at the University of 

Memphis [32] which, in turn, are based on machine-

learned data and NLP methods that fit into the general 

notion of AI. Nonetheless, the rules used in both systems 

can be considered transparent and explainable, with the 

greatest potential for unknown bias and the greatest 

opportunity for improving learning outcomes present in 

the learning activities and LRs themselves.  

11 Conclusion and Further Work 

The framework presented in this paper is being contributed 

to the IEEE AIS standards working group (P2247.1 on 

your IEEE dial). It will likely be refined as consensus is 

reached within the standards process. Updates and 

revisions are anticipated throughout 2019 and 2020 and 

will be reported, together with more information on 

detailed report formats, in future publications. 

Fig. 6: Visual Representation of AI in ALEKS 

Figure 7: Visual Representation of AI in AutoTutor  

Figure8: Visual Representation of AI in ElectronixTutor 
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